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 DISCLAIMER 
 This report was prepared as the result of work sponsored by the 

California Energy Commission. It does not necessarily represent 
the views of the Energy Commission, its employees or the State 
of California. The Energy Commission, the State of California, its 
employees, contractors and subcontractors make no warrant, 
express or implied, and assume no legal liability for the 
information in this report; nor does any party represent that the 
uses of this information will not infringe upon privately owned 
rights. This report has not been approved or disapproved by the 
California Energy Commission nor has the California Energy 
Commission passed upon the accuracy or adequacy of the 
information in this report.  
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Preface 
The Public Interest Energy Research (PIER) Program supports public interest energy research and 
development that will help improve the quality of life in California by bringing environmentally 
safe, affordable, and reliable energy services and products to the marketplace. 

The Program’s final report and its attachments are intended to provide a complete record of the 
objectives, methods, findings and accomplishments of the High Performance Commercial 
Building Systems (HPCBS) Program. This Commercial Building Energy Benchmarking 
attachment provides supplemental information to the final report (Commission publication # 500-
03-097-A2). The reports, and particularly the attachments, are highly applicable to architects, 
designers, contractors, building owners and operators, manufacturers, researchers, and the energy 
efficiency community. 

This document is the sixteenth of 22 technical attachments to the final report, and consists of 
research reports:   

� Monitoring HVAC Equipment Electrical Loads from a Centralized Location – Methods 
and Field Test Results (E5P2.2T3a) 

� Detection of HVAC Faults via Electrical Load Monitoring (E5P2.2T3b) 

� Demonstration of Fault Detection and Diagnosis Methods for Air-Handling Units 
(ASHRAE 1020-RP) (E5P2.2T3c) 

� Power Signature Analysis (E5P2.2T3d) 

The Buildings Program Area within the Public Interest Energy Research (PIER) Program 
produced this document as part of a multi-project programmatic contract (#400-99-012). The 
Buildings Program includes new and existing buildings in both the residential and the 
nonresidential sectors. The program seeks to decrease building energy use through research that 
will develop or improve energy-efficient technologies, strategies, tools, and building performance 
evaluation methods. 

For the final report, other attachments or reports produced within this contract, or to obtain more 
information on the PIER Program, please visit http://www.energy.ca.gov/pier/buildings or contact 
the Commission’s Publications Unit at 916-654-5200. The reports and attachments are also 
available at the HPCBS website: http://buildings.lbl.gov/hpcbs/.
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Abstract 
 
Monitoring HVAC Equipment Electrical Loads from a Centralized Location – 
Methods and Field Test Results: Documenting Meter Tests at the Iowa Energy 
Center  
 
This report presents the field-test results of the steady-state non-intrusive load monitoring 
(SS-NILM) system developed at M.I.T., and its suitability to load monitoring and fault detection 
and diagnosis in a small commercial building, specifically a KFC Restaurant in 
Norwell,Massachusetts. The results from the NILM system were validated using an independent 
and “traditional” multi-channel end-use power-metering system installed at the site. 
 
The organization of this report is as follows: First a general description of the NILM system 
developed at M.I.T., hardware and software, is given in chapter two, followed by a description of 
the test sites selected for this project in chapter three. The site description includes the equipment 
connected to the electrical panel monitored by the NILM system as well the parallel power-
metering system, installed to validate the results obtained from the NILM system. A discussion 
and comparison of the results obtained from the NILM and the parallel monitoring systems, as 
well as the modifications made to the NILM software components based on these results are 
presented in chapter four of the report. Conclusions and recommendations for possible future 
work are discussed and presented in the final chapter of the report. 
 
 
Detection and Diagnosis of HVAC Faults via Electrical Load Monitoring 
 
Detection and diagnosis of faults (FDD) in HVAC equipment have typically relied on 
measurements of variables available to a control system, including temperatures, flows, pressures, 
and actuator control signals. Electrical power at the level of a fan, pump, or chiller has been 
generally ignored because power meters are rarely installed at individual loads. This paper 
presents two techniques for using electrical power data for detecting and diagnosing a number of 
faults in air-handling units. The results from the two techniques are compared and the situation 
for which each is applicable is assessed. 
 
One technique relies on gray-box correlations of electrical power with such exogenous variables 
as airflow or motor speed. This technique has been implemented with short-term average 
electrical power measured by dedicated submeters. With somewhat reduced resolution, it has 
also been implemented with a high-speed, centralized power meter that provides component 
specific power information via analysis of the step changes in power that occur when a given 
device turns on or off. This technique was developed to detect and diagnose a limited number of 
air handler faults and is shown to work well with data taken from a test building. A detailed 
evaluation of the method is presented in the companion paper, which documents the results of a  
series of semiblind tests. 
 
The second technique relies on physical models of the electromechanical dynamics that occur 
during the short-time seconds after a motor is turned on. This technique has been demonstrated 
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with submetered data for a pump and for a fan. Tests showed that several faults could be 
successfully  detected from motor startup data alone. While the method relies solely on generally 
stable and accurate voltage and current sensors, thereby avoiding problems with flow and 
temperature  sensors used in other fault detection methods, it requires electrical data taken 
directly at the motor, downstream of variable-speed drives, where current sensors would not be 
installed for control or load-monitoring purposes. 
 
Demonstration of Fault Detection and Diagnosis Methods for Air-Handling Units 
(ASHRAE 1020-RP) 
 
Results are presented from controlled field tests of two methods for detecting and diagnosing 
faults in HVAC equipment. The tests were conducted in a unique research building that featured 
two air-handling units serving matched sets of unoccupied rooms with adjustable internal loads. 
Tests were also conducted on a third air handler in the same building, serving areas used for 
instruction and by building staff. One of the two fault detection and diagnosis (FDD) methods 
used first-principles-based models of system components. The data used by this approach were 
obtained from sensors typically installed for control purposes. The second method was based on 
semiempirical correlations of submetered electrical power with flow rates or process control 
signals. 
 
Faults were introduced into the air-mixing, filter-coil, and fan sections of each of the three 
air-handling units. In the matched air-handling units, faults were implemented over three blind 
test periods (summer, winter, and spring operating conditions). In each test period, the precise 
timing of the implementation of the fault conditions was unknown to the researchers. The faults 
were, however, selected from an agreed set of conditions and magnitudes, established for each 
season. This was necessary to ensure that at least some magnitudes of the faults could be 
detected by the FDD methods during the limited test period. Six faults were used for a single 
summer test period involving the third air-handling unit. These fault conditions were completely 
unknown to the researchers and the test period was truly blind. 
 
The two FDD methods were evaluated on the basis of their sensitivity, robustness, the number 
of sensors required, and ease of implementation. Both methods detected nearly all of the faults 
in the two matched air-handling units but fewer of the unknown faults in the third air-handling 
unit. Fault diagnosis was more difficult than detection. The first-principles-based method 
misdiagnosed several faults. The electrical power correlation method demonstrated greater 
success in diagnosis, although the limited number of faults addressed in the tests contributed to 
this success. 
 
The first-principles-based models require a larger number of sensors than the electrical 
power correlation models, although the latter method requires power meters that are not typically 
installed. The first-principles-based models require training data for each subsystem 
model to tune the respective parameters so that the model predictions more precisely represent 
the target system. This is obtained by an open-loop test procedure. The electrical power 
correlation method uses polynomial models generated from data collected from “normal” system 
operation, under closed-loop control. 
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Power Signature Analysis -Advanced Nonintrusive Monitoring of Electric Loads 
 
The Nonintrusive Load Monitor (NILM) can determine the operating schedule of electrical loads 
in a target system from measurements made at a centralized location, such as the electric utility 
service entry. In contrast to other systems, the NILM reduces sensor cost by using relatively few 
sensors. The NILM disaggregates and reports the operation of individual electrical loads like 
lights and motors using only measurements of the voltage and aggregate current at the utility 
service point of a building. It can also identify the operation of electromechanical devices in other 
kinds of power distribution networks. For example, the NILM can determine the load schedule in 
an aircraft from measurements made only at the generator, or in an automobile from 
measurements made at the alternator/battery block. The NILM can distinguish loads even when 
many are operating at one time. The NILM is an ideal platform for extracting useful information 
about any system that uses electromechanical devices. The NILM has a low installation cost and 
high reliability because it uses a bare minimum of sensors. It is possible to use modern state and 
parameter estimation algorithms to verify remotely the health of electromechanical loads by using 
a NILM to associate measured waveforms with the operation of individual loads. The NILM can 
also monitor the operation of the electrical distribution system itself, identifying situations where 
two or more otherwise healthy loads interfere with each other's operation through voltage 
waveform distortion or power quality problems. Strategies for nonintrusive monitoring have 
developed over the last twenty years. Advances in computing technology make a new wealth of 
computational tools useful in practical, field-based NILM systems. This paper reviews 
techniques for high performance nonintrusive load and diagnostic monitoring and illustrates key 
points with results from field tests. 
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ABSTRACT

This paper reports recent work to determine useful infor-
mation about component-level HVAC electrical loads�not
from submeters, which are accurate, rarely installed, and rela-
tively expensive, but instead from one or more centralized
locations in a building�s electrical distribution system. The
work includes laboratory tests with real-building data and
field tests made with low-cost hardware capable of the rapid
sampling needed for load disaggregation. Results indicate
that building electrical signals are often quite complex, that
individual loads can indeed be detected with reasonable reli-
ability, that more work is required to automate the process of
tuning the detection algorithm, and that there are benefits to
analyzing turn-on/turn-off events at multiple sampling rates to
minimize trade-offs between detection sensitivity and false
alarms.

INTRODUCTION

Accurate and affordable information about HVAC elec-
trical loads is of value to many individuals and organizations
involved in providing HVAC services: facility managers, who
would like to minimize operating costs and the costs and
down-time associated with repairs; electric utilities and
service providers, who need accurate load models to most
economically generate, transmit, and distribute power; and
energy service companies and building owners, who would
like inexpensive means to verify savings from energy-effi-
cient improvements. Electrical-power information can also be
used for power-quality monitoring and for analyzing loads
other than HVAC, including lights and process equipment.

The demands for both reasonable accuracy, suitable for
the task at hand, and moderate cost, in keeping with achievable

benefits, are not easily met. The required accuracy varies with
specific monitoring goals, graduated as follows:

1. detection of on-off switching events, to determine whether
equipment is operating in accordance with the expected
schedule and whether it responds to a control signal;

2. measurement of power magnitudes at the time of on-off
switches and throughout the operating cycle, to compute
energy consumption; and

3. measurement of changes in power or changes in the
frequency of operation of equipment, both relative to
normal operation, as a basis of detecting faulty operation.

The first level can be easily achieved with current trans-
ducers, now in limited use in buildings to effectively provide
an echo of a control signal and thereby verify that a fan or
pump has turned on or off on command. This simple technol-
ogy is not universally applied, suggesting some ambivalence
about cost versus benefit. Going to the second and third levels
requires more expensive power metering rather than binary
(on-off) current information. The third level, fault detection
and diagnosis, also requires development of methods to
analyze changes in electrical-power data and to relate these
changes to normal operating patterns. 

This paper describes recent work on an electrical-load
monitor capable of obtaining electrical-power data at a cost
lower than submeters. This monitor has its origins in residen-
tial buildings, where it was designed to be installed in lieu of
the standard revenue meter and hence did not cross the utility-
customer boundary. In that sense it was not invasive and was
therefore known as a non-intrusive load monitor, or NILM.
The analysis method for the residential meter, detailed in Hart
(1992) and now in commercial production, is based on

Monitoring HVAC Equipment 
Electrical Loads from a Centralized 
Location�Methods and Field Test Results

Dong Luo, Ph.D. Leslie K. Norford, Ph.D.
Student Member ASHRAE Member ASHRAE

Steven R. Shaw, Ph.D. Steven B. Leeb, Ph.D.

Dong Luo is a senior engineer with United Technologies Corporation. Leslie K. Norford and Steven B. Leeb are associate professors at the
Massachusetts Institute of Technology, Cambridge, Mass. Steven R. Shaw is an assistant professor at Montana State University, Bozeman.
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pinpointing the times at which a near-constant series of elec-
trical power measurements changes to another near-constant
series. Changes are characterized by their magnitude in real
and reactive power. Changes of near-equal magnitude and
opposite sign are paired to establish the operating cycles and
energy consumption of individual residential appliances.

This approach faces several limitations in commercial
buildings and, increasingly, in houses:
1. electrical noise generated by power electronics, which

makes it difficult to establish steady-state conditions and,
once steady state is defined, also generates changes in
power that must be analyzed as events even though they are
not of interest;

2. overlapping on-off events that may mask individual
changes; and

3. time-varying electrical power demand by individual
components.
The first two limitations have been overcome in two

ways. First, as described in detail elsewhere (Leeb 1993; Leeb
et al. 1995; Norford and Leeb 1996; Leeb and Kirtley 1996;
Leeb et al. 1998), a method has been developed to measure and
analyze the short-term dynamic electrical pattern associated
with the start-up of a piece of equipment to aid in identifying
this equipment in an environment that is either noisy or rich
with information. This approach computes spectral envelopes
at the fundamental and higher harmonic frequencies, detects
rapid changes in these envelopes, and compares the patterns of
such changes with libraries of known patterns, generated for
either classes of equipment (induction motors, rapid-start
lamps) or individual components (a grinder, for example).
Another approach to analyzing start-up transients as a means
of non-intrusive load detection is presented in Deschizeau et
al. (2000).

Detection and analysis of start-up transients hold the
promise of a powerful approach to fault detection, requiring
only short-term, focused, and robust power analysis rather
than more extended computation of changes in power
consumption under known loading conditions. Recent efforts
in this area rely on submetered rather than centralized power
measurements and are described in Shaw et al. (2002).

Second, a less powerful, more easily implemented, and
ultimately complementary effort detects changes in power
levels in a manner that is similar in spirit to the original resi-
dential concept but more effective in noisy electrical environ-
ments encountered in commercial buildings. Norford and
Leeb (1996) showed examples of how one aspect of this work,
median filtering, can improve signal quality. Abler et al.
(1998) introduced the signal processing algorithms. Work
reported in this paper builds on the initial efforts of Hill
(1995), provides a full discussion of material introduced in
Abler et al. (1998), and presents a significant extension to cope
with signals of interest that are small relative to noise. This
approach has immediate application in a number of areas,
including fault detection and diagnosis, and also provides a

means of triggering the more computationally intensive tran-
sient-event detector.

This paper first describes an appropriate technique for
detecting turn-on/turn-off events in noisy electrical power
signals. The basic method precedes a number of refinements.
The refined approach is then melded with an oscillation detec-
tor, to shield the on-off detector from the impact of oscillatory
power signals and to analyze those oscillations as indicators of
poorly tuned HVAC controllers. Next, the on-off detector is
extended to operate at multiple sampling rates, found neces-
sary in order to reliably discern cycling patterns for a two-
stage reciprocating chiller in a whole-building electrical
signal. Finally, the paper compares centralized power
measurements with submeters, briefly describes the monitor-
ing hardware, and offers conclusions. Most of the data used in
this work were collected at the test building used for an
ASHRAE-sponsored research project on fault detection in
HVAC systems, RP 1020; the test building is described more
fully in Norford et al. (2000, 2002).

BASIC DETECTION ALGORITHM�
GENERALIZED LIKELIHOOD RATIO (GLR)

Figure 1 shows representative electrical-power data
collected at the ASHRAE test building. Electrically noisy
commercial buildings have led to a large number of false
alarms when detecting turn-on/turn-off events via changes in
steady-state power (Norford and Mabey 1992). A statistical
algorithm more reliable and powerful than a simple trigger
based on deviation from the mean has been developed by
extending the generalized likelihood ratio (GLR) (Basseville
and Nikifirov 1993).

The GLR detection algorithm calculates a decision statis-
tic from the natural log of a ratio of probability distributions
before and after a potential change in mean: 

, (1)

where
= sampled variable at time i;
= mean values of the sampled sequence before and 

after the event, respectively;
= probability density function of the sampled sequence 

 about the mean value ;
= detection statistic, which is the log likelihood ratio of 

the joint frequency function for the independent 
variables yi during time j to k about .

The behavior of the detection statistic in the absence or
presence of a step change in electrical power can be easily
understood. Suppose that the function is used to test whether
a chiller of known electrical power has turned on. Before the
event to be tested, power data, collected at a measurement
point that includes electrical service to the chiller, are distrib-
uted about the pre-event mean power level. If the chiller

Sj
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does not turn on, the power measurements will not change.
The probability density function (PDF) in the numerator of
Equation 1, which is centered on a post-event mean that
includes the chiller power, will be very small, while the PDF
in the denominator will be much larger, because data points
will still be clustered about the pre-event mean. In other
words, there is a very small probability that the measured
power level would be associated with the operating chiller.
The probability ratio is therefore very small and the log of
the ratio is large and negative. As the magnitude of the
hypothesized change in power decreases, the ratio
approaches a value of 1.0 in the absence of a power change
and the natural log approaches a value of 0. By contrast, if
the chiller turns on, the PDF in the numerator will be large,
because data points will be centered about the hypothesized
mean, and the PDF in the denominator will be small. The
ratio, therefore, is large.

There are two independent variables, the change time and
the mean value after the change, which leads to a double maxi-
mization of the detection statistic :

, (2)

where

= estimate of the upper bound of the ratio of the joint 
frequency function about the post-event mean value 

 for a given pre-event mean , within the 
window [j, k].

sup = supremum, i.e., the least upper bound of  over [j, 
k] about the mean value  with reference to the 
known mean  before the change.

In other words, the event identified by the maximum
probability ratio is found by searching for the time j and the
corresponding average  in each subwindow j-k in the
current detection window 1-k.

In some cases, the minimum magnitude of the change in
power for a given component is known in advance. The mini-
mum value of the change of parameter , designated as Vm,
can be used in the search of , i.e., . Equation
2 can then be rewritten as: 

. (3)

Because noise in electrical power of equipment follows
the normal distribution, according to the central limit theorem
(Rice 1988), noise in the total power data of a system consist-
ing of components independent in power consumption can
also be described by the normal distribution. Therefore, the
deviation of the sampled total power data yi from the calcu-
lated mean  can be represented by the normal distribution,

. Here,  stands for the standard deviation of the
total power data of the monitored system. 

For an independent Gaussian sequence, the probability
density function is

. (4)

The detection statistic can then be derived as 

. (5)

Figure 1 Whole-building electrical power, sampled at 24 Hz. Data were collected at the electrical-service entry to the test
building used in ASHRAE RP-1020.
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Let , the change in mean power signal after
an on-off event. Then

(6)

and

(7)

where  is the value of V at which gk reaches its maximum,

Then gk can be rewritten as

. (8)

If Vm = 0, meaning that a change of mean of any magni-
tude is of interest or no information about the minimum
expected change is available in advance, then 

. (9)

The magnitude of gk increases with the change in power
and the abruptness of the change. A value above a threshold
indicates an on-off event of potential interest.

Training the Parameters of the GLR Algorithm
The GLR detector requires that four parameters be trained

for a given application: 
1. the length of the pre-event averaging window; 
2. the length of the detection window; 
3. the threshold for the detection statistic; and 
4. the standard deviation (or variance) of the power data.

Guidelines follow for selecting the parameters in one or
more of three ways: a priori experience, tuning the parameters
on the basis of one-time measurements, or automatically
adjusting the parameters. The first two guidelines concern the
size of sliding windows, as expressed in a number of samples.
These guidelines have been shown to be reasonable for a range
of sampling rates. Guidelines for the sampling rate itself will
be presented later in this paper.

The Length of the Pre-event Averaging Window.
Because multiple power changes occur in sequence in HVAC
systems, the mean before the change must be continuously
updated with each new data point. The length of the data
window used to estimate the pre-event average power has a

profound impact on the detection statistic. The GLR algorithm
with a short window will yield a large detection statistic when
the incoming data include spikes, which will be a source of
false alarms if the detection statistic exceeds its threshold
value. Further, the GLR algorithm with a short window may
also miss events that occur gradually over several data points.
On the other hand, a GLR detector with a long window will not
find multiple abrupt changes that are close to each other in
time.

On the basis of trial-and-error tuning, the appropriate
length of the pre-event averaging window was 10 data points
for a set of one-minute-averaged data that recorded electrical
power for four air handlers, each consisting of a supply and a
return fan. At the ASHRAE test building, this window was set
to be six data points, sampled at one-second intervals. An esti-
mate of a suitable window length can be made on the basis of
the characteristics of the HVAC components, how often they
are switched on or off, the status of the electrical facility, and
the typical power profile of the system. Observations made in
this research indicate that the upper limit for the length of the
pre-event averaging window should be no longer than the
interval between two major consecutive events. This interval
can be estimated from a basic knowledge of the monitored
HVAC system. Major individual components usually have
minimum on and off times, to protect against deterioration due
to frequent on/off switching. Moreover, systems of compo-
nents are or can be controlled to operate in a sequence with
specified time intervals, as in turning on or off air-handler
fans. Note that this requirement is based in the time domain
and is converted to a number of samples on the basis of the
sampling rate.

As a lower limit, the pre-window should never be shorter
than significant electrical noise spikes and ideally should be
longer than the duration of the start-up period of each single
component in the system. However, this condition cannot
always be met for a real system, because the start-up of a VSD
fan can be as long as 15 minutes while the interval between the
on/off transitions of two components can be shorter than this.
In such cases, other approaches are needed, such as the multi-
rate sampling technique discussed later. Practical experience
has shown that the window should contain at least four data
points. 

Without violation of the above basic rules, the pre-
window should be kept short. If there is a range of possible
intervals between the lower and upper bound, a value at or near
the lower bound should be selected. For a given system, the
window length for detection seems to be consistent across
different seasons and equipment operating conditions, as
demonstrated by extensive tests to detect HVAC equipment
on-off events in the ASHRAE 1020-RP test building (Shaw et
al. 2002; Norford et al. 2000, 2002). 

If the multi-sampling rate detection algorithm (to be
described later) is used, the number of data points in the
window should be determined from the above time-domain
guidelines and the fastest sampling rate. The same number of
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data points are used at all sampling rates in the multi-rate
algorithm.

The Length of the Detection Window. The above basic
limits for the pre-event averaging window also apply for the
post-event detection window�i.e., it should not be longer
than the interval between two consecutive events, never
shorter than a disturbance, and ideally not shorter than the
duration of a start-up transient process. On the other hand,
unlike the pre-event averaging window, which is used to
achieve a stable mean as the reference for coming events, the
post-event detection window is intended to be sensitive to
events yet robust to disturbances. A shorter post-event detec-
tion window is more sensitive to changes than a longer one.
Moreover, to reduce the computing time required to search for
a change in the post-event detection window, its length should
be as short as possible. The appropriate length of the post-
event detection window was found to be 25~50% of the pre-
change average window in order to get a relatively stable yet
sensitive average for detection of on-off events. For the fan
data sampled at one-minute intervals, the detection window
was set to five data points, 50% of the pre-event averaging
window. For the ASHRAE test building, the detection window
was three data points, also 50% of the pre-event averaging
window. 

The Threshold for the Detection Statistic. Literature on
the GLR method describes the detection threshold, a dimen-
sionless quantity, as a trained parameter. The magnitude of an
appropriate detection threshold scales with signal noise, the
minimum signal change of interest (which comes from a
knowledge of rated equipment-power levels), and the abrupt-
ness of potential changes in the system. For detection of on/off
events from the total electrical power of eight fans in a campus
building, the threshold was set to 200 on the basis of on/off
tests. The same threshold was used at the ASHRAE test site.
For general detection applications, this threshold might be set
adaptively during tests designed to determine detection
parameters appropriate for a given HVAC system. The thresh-
old for the detection statistic can be initiated as an arbitrary
small number, for example a magnitude of one, and then
increased until all events of interest are identified with a mini-
mum occurrence of false or missed alarms.

The Standard Deviation of the Power Data. The stan-
dard deviation is an important measure of data quality, which
for HVAC-system electrical-power data may vary rapidly over
time due to noise and changes in power of equipment of inter-
est. In the GLR algorithm, the magnitude of the detection
statistic, as shown in Equation 8 for the case where power
changes of any magnitude are of interest, is inversely propor-
tional to the standard deviation. Therefore, calculation of the
standard deviation becomes a key issue for successful change
detection. The simplest method to determine the standard
deviation is to measure it on a one-time basis during a training
period. However, GLR output based on a fixed standard devi-
ation was rarely fully satisfactory, which prompted one of the
improvements to be discussed in the next section.

The standard deviation is valuable information of itself, in
addition to its impact on the GLR detection statistic. It will
increase noticeably when a fan, pump, or chiller under closed-
loop control is unstable due to poorly selected controller gains.
Norford and Leeb (1996) showed that a poorly tuned chiller
controller could be seen in the electrical signal measured at the
HVAC service entry. Detection of the oscillations can be auto-
mated via calculation of the standard deviation in the data
window.

IMPROVEMENTS TO THE DETECTION ALGORITHM

Resetting the Detector after an On/Off Event Has
Been Detected. Consider a single on/off event, detected by the
GLR algorithm as it works its way through a continuous
stream of data, sliding the pre-event mean window over one
data point at a time and then calculating the detection statistic
for each time in the detection window. When the detection
statistic exceeds the threshold, it is desirable that the alarm be
immediately silenced. That is, a single event should produce
a single needle spike in the detection statistic, because an
alarm of appreciable width can mask subsequent events.
However, close examination of the algorithm reveals that it
can continue to produce alarms as the windows slide through
the data. Only when the windows move entirely past the on/off
event will the alarm necessarily cease. This phenomenon
clearly depends on the length of the windows, the abruptness
of the event, signal noise, and the value assigned to the thresh-
old. While it is possible to adjust window width to account for
this effect, a better strategy is to purge the pre-event mean
window when an alarm first occurs and refill it with new data.
At the time of purge, the detection statistic will immediately
drop down below the threshold. Figure 2 shows a representa-
tive pre-event averaging window, detection window, and reset
window, used to reload the pre-event averaging window. The
length of the reset window is, of course, the same as the pre-
event window. 

Updated Standard Deviation. The standard deviation
can be continuously calculated from data in the pre-event
averaging window. While such an on-line calculation is more
accurate than a single calculation during the GLR setup
period, it was found necessary to limit the range of allowable
values because such extremes unduly influence the magnitude
of the detection statistic. For example, a very steady, noise-
free electrical signal will have a low standard deviation and the
detection statistic will be very large, even for events associated
with very small power changes that are of no interest.   A very
noisy electrical-power signal will cause the detection statistic
to be very small, potentially masking events of interest. 

Limits on the standard deviation were assigned as a frac-
tion of the total power. Tests showed that the standard devia-
tion tends to increase as more equipment is in operation and
the total power increases. Data from a training period were
used to determine the ratio of the measured standard deviation
and the measured total power. During subsequent on-line FDD
tests, the standard deviation was estimated as a product of this
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ratio and the measured total power. This method has given the
most reliable estimate of the standard deviation because it
eliminates the effect of the extreme values of the standard
deviation while incorporating an updated estimate of the stan-
dard deviation in the calculation of the GLR detection statistic.
At the ASHRAE test site, reasonable upper and lower limits
for the standard deviation as fractions of the current power
data were taken to be 10% and 1% respectively. 

Non-Zero Minimum Expected Change. The GLR
equation is easy to implement when the minimum expected
change in power is zero. However, the zero-power minimum
may cause more false alarms than a minimum value assigned
on the basis of knowledge of equipment size. This can be
readily seen from Equation 8: gk increases with decreasing .
In practice, it is often reasonable to find and set some mini-
mum expected change based on the knowledge of the system
and its components. For example, if the NILM were used to
analyze fan performance after a variable-speed-drive retrofit,
the minimum power level of interest would be set by the fans
and would exclude smaller pieces of equipment, such as
chilled-water pumps, as well as unknown disturbances. With
the properly determined minimum expected change Vm, the
detection statistic is insensitive to such disturbances and their
accumulation within one window length, thus making the
detection more reliable. A minimum expected change of 200
W was selected for the ASHRAE test building. 

Median Filter. The performance of the GLR is adversely
affected by signal noise. One way to reduce the impact of noise
is to pre-process the data with a median filter (Karl et al. 1992),
which simply picks the median value of the sequence to repre-
sent the current value. The length of the median filter�s
window should not be shorter than the duration of an electrical
spike, observed in this study to be generally less than five
seconds, and not longer than the interval between two consec-
utive events, selected as 20 seconds. The median filter is
designed for the base sampling rate or interval, in the event
multi-rate sampling is used. For example, if the base sampling

interval is one second, then the number of data points in the
filtering window should be between 5 and 20. The filtered data
are then used for detection with different sampling rates, if
necessary. At the ASHRAE test site, ten data points were
included in the median filter window.

One possible problem with the median filter is that it
masks rapid power oscillations. At the ASHRAE test building,
this potential masking was avoided by using different data
sets, one for change detection with the power data processed
by a median filter and the other for oscillation detection with-
out the median filter.

Combined Detection of On/Off Power Changes and
Power Oscillations. Oscillation of power caused by unstable
control in HVAC systems may degrade equipment and in some
cases increase energy consumption, and is a fault that should
be detected. One of the major characteristics of oscillations is
the deviation of the data from their mean value in a window of
appropriate length. This fault was identified by comparing the
standard deviation of the data against a threshold that was
dynamically adjusted as a fraction of the current power data. 

The key points in designing a GLR detector with oscilla-
tion detection capability are proper thresholds for the detec-
tion statistic and for the standard deviation. Detecting step
changes in power requires an upper threshold for the detection
statistic, HGLR (high value for GLR), and a lower threshold
for the standard deviation, LSTD (lower value for standard
deviation). To detect an on-off event, the GLR detection statis-
tic must exceed HGLR and the standard deviation must be no
larger than LSTD. The oscillation detector relies on an upper
threshold, HSTD, for the standard deviation and a lower
threshold, LGLR, for power changes. The standard deviation
must exceed HSTD and the GLR detection statistic must be no
larger than LGLR. Thresholds established in this manner
eliminate the fuzzy intermediate region where, for example,
fluctuations in power may cause false alarms in the change
detector, and permit a clearer distinction of step changes and

Figure 2 Data windows used with the GLR detection algorithm.

V� j
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oscillations. The LGLR and the LSTD were set to be less than
10% of the HGLR and 20% of the HSTD, respectively, and
were trained with measured data to minimize false alarms.
Figure 3 shows data with both on-off events and an unstable
controller, using power data recorded by a NILM installed at
the motor-control center in the ASHRAE test building. During
a period when the supply-fan static-pressure controller gain
was set to produce power oscillations, a chilled-water pump
was turned on at about 3600 seconds. With HGLR= 2500,
LGLR= 250, HSTD= 0.02, and LSTD= 0.004, both events
were alarmed successfully. 

OPERATION OF THE GLR DETECTOR WITH 
MULTIPLE SAMPLING RATES

In spite of the improvements just described, applying the
GLR detector to data sampled at a single rate inevitably
involves a conflict between sensitivity to rapidly occurring
events and susceptibility to false alarms generated by electri-
cal noise. It is therefore worthwhile to explore the benefits of
applying the GLR to a data set sampled at different rates. This
will be done in three steps. First, the rules established above
for determining the sampling rate will be applied and will be
shown to have unavoidable limitations in detecting rapidly
sequenced events. Second, the same rules will be shown to be
unsatisfactory in detecting chiller on/off cycling in a noisy
electrical signal. Third, the GLR detector will be applied at
different sampling rates and the results combined in a way that
overcomes some of these limitations.

Order of Magnitude Analysis of 

Sampling Rate Selection

Selecting a single sampling rate requires considerable
care. An appropriate starting point is to bound the sampling
interval: the upper bound should be less than the shortest time
interval between two consecutive events of interest and the
lower bound should be greater than the time required for the
fastest turn-on event of interest. The need for the upper bound
is clear, but it may lead to sampling rates that leave the GLR
sensitive to noise, as will be discussed shortly. The lower
bound is needed because shorter sampling intervals will make
a step-change take on ramp-like properties and be harder for
the GLR algorithm to detect.

The interval between consecutive events can be very
short, as illustrated with a single day of whole-building data,
taken at the test building used for ASHRAE 1020-RP and
previously shown in Figure 1. The data were collected with
a NILM and were sampled at 24 Hz in the first stage of the
analysis. During a single 30-second period (12300-12330
seconds) three devices were turned on sequentially. (The
identity of these devices is not important for this analysis
and was not determined. The whole-building NILM was
used primarily to detect the reciprocating chiller, and other
events were not classified.) Reducing the sampling interval
from 60 to 10, 1, and finally 0.125 seconds improved the
resolution. Figure 4 shows this progression.

The three turn-on events were taken to be a single step
change at a sampling interval of 60 seconds. With the
sampling interval reduced to 10 seconds, the events were
shown as single data points of different magnitude, discernible
to the eye but not to the detection algorithm. When the
sampling interval was reduced to 1 second (not shown in

Figure 3 Total electrical power of the HVAC system in a test building, showing oscillations indicative of an unstable
supply-duct static-pressure controller as well as an on-off switching event. 
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Figure 4 because it nearly overlapped data taken at 0.125
second intervals), the first and second events could be clearly
recognized by eye and by the detection algorithm as well. The
last event was discernible to the eye but not to the detection
program, which needed an appropriate stream of data samples
to build up the GLR detection statistic. The last event
remained ambiguous to the program until the sampling rate
was increased to 8 Hz, i.e., an interval of 0.125 seconds. 

At the ASHRAE test building, the duration of the fastest
turn-on event was 0.125 second and the shortest time interval
between events was 1.25 seconds. As just shown, a sampling
interval of 0.125 second was needed to produce enough data
points to distinguish start-up transitions separated by 1.25
seconds. But subsequent tests to detect cycling of a recipro-
cating chiller showed that the false alarm rate increased dras-
tically when the sampling interval dropped below one second.
Because the three unknown start-up signals were not of inter-
est and reliable detection of the chiller was central to the
research, the minimum sampling interval was set to one
second. Events spaced more closely than the sampling rate
were unavoidably missed or misinterpreted. Such events
seem to happen by coincidence and are not often seen in an
HVAC system. In tests to date, there was generally an interval
of not less than 10 seconds between on- and off-transitions for
such coupled equipment as supply and return fans associated
with the same air handler. The slower sampling rate not only
reduced false alarms but also reduced the execution time of
the GLR detector. This was important when the GLR detector
was operated with multiple sampling rates as detailed later.
The running time of the detector, as implemented on a
personal computer with a clock speed of 233 MHz, was
reduced from 90 minutes at an 8 Hz sampling rate to five
minutes at a 1 Hz sampling rate for the evaluation of a single

day�s test, making the detector more desirable for on-line
detection with comparable computers.

Detection of On/Off Changes with a 
Single Sampling Rate

Different sampling rates were used to examine power data
for six days from the ASHRAE test building, with the goal of
detecting reciprocating-chiller cycling. Figure 5 illustrates the
first seven hours of the total power data on a single day. Figure
6 shows chiller power as measured with a submeter as well as
GLR detection output for the chiller for a single sampling rate
of 1 Hz. Note from Figure 5 that it is not easy to visually distin-
guish the chiller cycles from the whole-building power signal.
The first chiller cycle, aligned with data from the submeter, is
readily discerned. Most of the following events are obscured
by other events of equal or greater magnitude. 

The GLR detector identified all 13 start-up events from
the 1 Hz samples but missed four of the shut-down events,
which were masked by concurrent events. Other sampling
intervals, including 2, 3, 4, 5, 6, 7, 8, 10, 12, 15, 20, 30, 40, 50,
and 60 seconds, were also tested. However, all those sampling
intervals produced results similar to those shown in Figure 6.
With any one single sampling interval, the detector was not
able to find all the on/off switches correctly. However, it was
possible to visually identify all of the events by matching the
on�s and off�s among outputs with different sampling rates. In
this case, on/off matching among the outputs with the
sampling rates of 1, 2, and 5 seconds identified all the on/off
switches without any false alarms or missing events. Such
other combinations as 1, 2, and 10 seconds were also success-
fully used for the matching. Similar detection patterns with
single sampling rates were found with the remaining five

Figure 4 Power data sampled at three different intervals during a period of 120 seconds when three events occurred,
demonstrating the significantly different data patterns fed to the detector due to the varying sampling intervals.



ASHRAE Transactions: Symposia 849

Figure 5 Whole-building power data from the ASHRAE 1020-RP test site, sampled at 24 Hz and plotted at 10-second
intervals. The time period is about seven hours.

Figure 6 Submetered chiller electrical power and the on/off cycles detected by the GLR algorithm as changes in the
building�s total power data sampled at 1 Hz over the same time period as in Figure 5.
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days� data. This prompted an effort to automate the process of
matching events detected at different sampling rates.

Detection of On/Off Changes of 
Specific Equipment by Automatic Matching 
Among Multiple Sampling Intervals 

The basic GLR detector was extended to analyze data at
multiple sampling rates. Each sampled series with a specified
integer-sampling interval between the lower and upper limits
was supplied to the GLR detector. For the ASHRAE test build-
ing, an acceptable maximum value for the sampling rate was
about an order of magnitude longer than the minimum value.
Specifically, the minimum sampling interval was one second
and the maximum was set to be 30 seconds. 

Once an event was found by the detector, the power
change was calculated as the difference between the mean in
the post-event window and that in the pre-event window. The
mean in the pre-event window is the average of data in the
whole window, while that in the post-event window is calcu-
lated with the data from the point where the event is found to
the end point of the window. The detected power changes for
each sampling interval were sorted by the time of the changes,
assigned to the equipment with that magnitude, and matched
with the output from other sampling intervals. Matching of
events involved the time of event and the sign (positive for on-
transitions and negative for off-transitions) and the magnitude
of the changes. 

Upper and lower limits need to be trained for the magni-
tude of change or set adaptively (Hart 1992). Such limits can
be trained by applying the detector to data collected during one
day�s operation. For the detection shown in Figure 6, for
example, data during the first seven hours of a normal opera-
tion day will suffice for training. At some time point, if a posi-
tive change within the given limits is found, then the next
negative change within the magnitude limits seen by any of the
employed sampling rates will be assigned to the positive
change and an on/off cycle is recorded. 

Data filtering criteria may be applied to specific equip-
ment to reduce the false alarm rate. This is helpful when the
power of a component of interest is similar to that of other
equipment, as is the case at the test building (Figure 5). For the
chiller, for example, these criteria include the minimum off-
time between cycles, which is typically set within the chiller
controls to prevent unnecessary equipment cycling, and the
minimum expected on-time. These limits were incorporated in
the chiller-detection algorithm. Such filtering criteria are
based on normal, not faulty, chiller operation. The above
�minimum� criteria can be used for the detection and diagno-
sis of such faults as short cycles or prolonged operation time.
This can be done with two different output files, one using the
�minima� for filtering and the other using them for fault detec-
tion and diagnosis. If an excessive number of equipment
cycles is detected in an unfiltered data stream, then there is
either a fault or there are other components of comparable
magnitude. If the power magnitudes of different equipment
are distinct from each other, then these �minima� will not be

needed for filtering and can be limited to detection of cycling
faults.

The multiple-sampling-rate GLR approach has proved to
be very useful in coping with electrical-power complexities
not found in residential buildings. First, start-up and shut-
down events vary in their apparent abruptness, as a function of
the equipment (soft-start motors, for example) and as influ-
enced by changes in other loads. In the ASHRAE test building,
VAV air-handler fans have a very slow start-up signature
because they are controlled by variable-speed drives. With the
multi-rate sampler, these start-up transients can be detected, as
was shown for the VAV fans in the test building. Detecting the
fans required that the maximum sample interval be increased
from 30 seconds to 10 minutes. At the other end of the
sampling-rate spectrum, abrupt shut-down transients are diffi-
cult to detect when masked by gradual changes in power
drawn by other equipment. In these cases, the fast samplers
included in the multi-rate algorithm work best. Second, as
shown in Figures 7 and 8, power oscillations characteristic of
a poorly tuned controller were more reliably detected via anal-
ysis of data sets taken at multiple rates. This approach tends to
mitigate the problem of picking a sampling rate appropriate
for detection of oscillations at an unknown frequency.

SUMMARY OF TRAINING GUIDELINES
Guidelines for training the GLR detector, presented in

detail above, are summarized as follows:
1. Record electrical power for the circuits monitored by the

NILM for one day under typical operating conditions. The
sampling rate should be between 1 and 10 Hz for common
HVAC systems.

2. Locate the events from the abrupt changes in the total
power data and estimate the fastest and the slowest events. 

3. Determine the base sampling rate for detection. The base
sampling rate will be used as the fastest sampling rate if
multi-rate sampling is employed. Therefore, power data
sampled at this rate should be used to discern by eye each
event of interest. 

4. Determine the window lengths. The length of the detection
window should contain at least two data points. It should
not be longer than the interval between two consecutive
events and never shorter than a disturbance. The length of
the pre-event window is 2~4 times longer than the detection
window. The length of the post-event window is the same as
that of the pre-event window.

5. Calculate and estimate the standard deviation of the power
data as a fraction of the current total power data for the
detection, f. The lower/upper limits of the standard devia-
tion can be set at 1~2 magnitudes lower/higher than the esti-
mated value f.

6. Estimate the threshold for the detection statistic. A reason-
able base value for the threshold is 1/f 2. The threshold can
then be trained by adjusting this value until all events of
interest can be seen by the detector, with a minimum
number of false alarms.
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It should be noted that exact values are not expected for
the above parameters due to the statistical properties of the
detection method. Slightly different combinations of these
parameters may yield equally acceptable detection output.

The detector developed in this research has been success-
fully applied to another test site. With the above basic rules and
guidelines, the training process for the parameters became
much easier. Because the rules for the window lengths are for
common HVAC systems, the same window lengths were used
and the training was confined to determination of the thresh-
olds for the detection statistic and the standard deviation. On/
off events at this site were more abrupt than at the ASHRAE
test building, in part because there were no variable-speed
drives, and the detector produced satisfactory results while
operating at a single sampling rate. 

COMPARISON OF ON/OFF CHANGE DETECTION 
WITH CENTRALIZED AND SUBMETERED 
POWER DATA

A well-trained GLR detector will detect a high percentage
of on/off events of interest, with a minimum number of false
alarms. However, such performance does not necessarily
mean that power changes can be quantified with sufficient
precision to detect potentially faulty conditions. Table 1 and
Figures 9-11 compare the GLR with single and multi-rate
sampling against data from electrical submeters at the
ASHRAE test building. During this five-hour test period,
which started at 19:44 and included normal equipment oper-
ation and the end-of-day shut-down sequence, there were 17
on-off switching events for two hot-water pumps, two supply
fans, and two return fans, among a total of six fans and 10
pumps served by the monitored circuits. 

Figure 7 Motor-control-center electrical-power data from the ASHRAE test site, taken over a 24-hour period beginning
at 8 p.m. The controller gain for the supply fan in one of three VAV air handlers in the building (and monitored
by the NILM on the motor-control center) was increased at about 7:25 a.m. to the point where the fan control
was unstable.

Figure 8 Detection of the unstable supply-fan controller via calculation of the standard deviation with data sampled from
the motor control center at two different intervals, 1 and 5 seconds, combined and shown in different time
sections of 24-hour operation. 
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With Single Sampling Interval
Of the 17 events, 15 were found with different levels of

error and the remaining 2 were missed. Table 1 and Figure 10
show that the quality of the detection depended on the magni-
tude of the change relative to the total power as well as the
current data trend. For example, when water pump B turned
off at 20:34 and the change in power of �244 W was less than
5% of the total power, the error was about 150%, relative to the
submetered change in power. However, when the supply fan
for AHU-A turned off at 21:55 and the power change of -1400
W was about 25% of the total power, the error was less than
0.3%, again relative to the submetered power. When the

change magnitude was very small, the detector was not able to
find the event at all, including the missed event at 21:56 when
the return fan for AHU-A was turned off with a power change
of only �82 W. 

The shorter the time interval between two changes, the
more difficult it was to find the changes, especially small ones.
This is simply because as a steady-state detector, the GLR
needs some time for the effect of the former event to die out
in order to find the subsequent change. The smaller the magni-
tude of the change, the longer the time interval needed to
detect it. This is demonstrated by the output at 20:21 for the
turnoff of pump A. With a magnitude of -275 W, the event was

TABLE 1  
ON-OFF POWER CHANGE DETECTION FOR A MOTOR CONTROL CENTER SERVING FANS AND 

PUMPS IN A TEST BUILDING, AS COMPARED WITH SUBMETERED DATA

Time ON/OFF Equipment Submeter (W)

 NILM - GLR 

 Single Interval Multiple Interval

Power (W) Error (%) Power (W) Error (%)

20:10 Loop-B hot water pump�OFF �405 �502 19.3 �400.6 1.1

20:19 Loop-B hot water pump�ON 264 249 6.0 284.1 7.1

20:21 Loop-A hot water pump�OFF �275 Not found �279.0 1.4

20:25 Loop-A hot water pump�ON 252 313 19.5 226.5 11.2

20:34 Loop-B hot water pump�OFF �244 �98 149.0 �476.1 48.8

20:44 Loop-B hot water pump�ON 232 497 53.3 230.4 0.7

21:02 Loop-B hot water pump�OFF �309 �346 10.7 -281.6 9.7

21:14 Loop-B hot water pump�ON 267 171 56.1 252.1 5.9

21:29 Loop-B hot water pump�OFF �202 �11 1736.4 �171.5 17.8

21:47 Loop-B hot water pump�ON 237 289 18.0 257.2 7.9

21:55 AHU-A supply fan�OFF �1400 �1396 0.3 �1410.9 0.8

21:56 AHU-A return fan�OFF �82 Not found Not found

22:00 AHU-B supply fan�OFF
AHU-B return fan�OFF

�430 �274 56.9 �485.1 11.4

22:06 Loop-B hot water pump�OFF �300 �242 24.0 �243.2 23.4

22:26 Loop-A hot water pump�OFF �264 �283 6.7 �244.4 8.0

23:40 Loop-A hot water pump�ON 342 373 8.3 220.1 55.3

00:33 Loop-B hot water pump�ON 295 494 40.3 450.5 34.5
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Figure 9 Electrical power data collected at the motor-control center in the ASHRAE 1020-RP test building, taken over
a five-hour interval beginning at 7:40 p.m. that includes the normal evening shutdown period. Seventeen on-
off transitions are included in the data. 

Figure 10 Comparison of centralized and submetered power monitoring in the ASHRAE 1020-RP test building, with
analysis of data taken at a single sampling rate of 0.1 Hz. 

Figure 11 Comparison of centralized and submetered power monitoring in the ASHRAE test building, with analysis of
data taken at multiple sampling rates. Power monitoring is improved relative to analysis of data at a single
sampling rate of 0.1 Hz. 
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still missed because it was masked by gradual changes in elec-
trical power due to the previous off-transition and to noise,
which can be seen in Figure 9. 

With Multiple Sampling Intervals
The multiple-sampling-rate approach has been shown to

improve both the detectability of events and the resolution of
the associated change in electrical power. This can be demon-
strated by running the detector with multiple sampling inter-
vals through the same five-hour data set used to evaluate the
single-sampling-rate algorithm and plotted in Figure 9. As
shown in Figure 11, the multiple-sampling-rate detector iden-
tified 16 of 17 on/off events, one of which was undetectable
with the single-sampling-rate approach. Moreover, for almost
all events the detector estimates a change in power that is
closer to the submeter measurements than was the case for the
single-sampling-rate algorithm, as listed in Table 1.

Under a few circumstances, the detection error for the
multi-rate sampler was larger than that for the single sampling
rate. With the lowered threshold of the detection statistic for
multiple rates (the lowest value among the different sampling
rates), the data pattern for reset of the detection window is
different from any single sampling rate with a higher thresh-
old, and this causes some variation of the change magnitude.
But the occurrence of such problems is rare because the multi-
rate detection is virtually a vote among different sampling
intervals.

The major issue to be addressed in the near future for the
multi-rate detection is to develop an appropriate algorithm to
automatically calculate or select the �optimal� change value
among different sampling intervals, i.e., the value that is clos-
est to the real change. This might be realized by averaging,
voting, or sorting among given sampling intervals on the basis
of observations with more testing data.

DESCRIPTION OF NILM HARDWARE
A block diagram of the non-intrusive load monitor instal-

lation at the test facility used in ASHRAE RP-1020 appears in
Figure 12. In addition to the conventional NILM-style connec-
tions at the main panel (for remote1) and the motor control
center (for remote2), selected loads associated with air-
handling unit B and the chiller were individually measured.
With the connections shown in Figure 12, remote1 measured
spectral envelopes (i.e., power envelopes for the fundamental
and higher harmonic signals) for the entire building and
remote2 measured spectral envelopes for the motor control
center. Remote1 and remote2 shared the task of collecting data
from individual loads.

The hardware platform for the prototype event detector
consisted of a personal computer working in tandem with a
digital signal processor (DSP). Custom software was written
for the circuit board that included the DSP to compute esti-
mates of the spectral or Fourier components of observed
current waveforms in real time. The board provided the DSP
chip, a 16-bit, 2-channel analog-to-digital converter (ADC),

a 16-bit, 2-channel digital-to-analog converter (DAC), off-
chip memory for temporary storage, an off-chip flash
PROM for permanent storage, and a convenient program-
debugging interface. The DSP communicated data to the
host PC over a parallel port. The host PC processed the
spectral information to provide load recognition and other
value-added services such as critical load diagnostics.
Because this prototype was PC-based, it was possible to
provide these services and deliver information remotely. 

The computers labeled remote 1 and remote 2 in Figure 12
operated at 200 MHz and were equipped with 32 MB memory
and approximately 1 GB hard drives. Both machines were
equipped with a network interface card, a data acquisition
card, and the DSP card. The computers ran a highly stable,
open-source, free operating system and were remotely main-
tained by secure shell over the Internet. Stability is a key
consideration for any system that must operate remotely in the
field. At the test site, both systems operated without any direct
intervention for over two years of constant use. During active
testing, data collected over 24-hour periods were accumulated
and compressed at the on-site computers and were automati-
cally transmitted at night to laboratory computers, where
NILM data were maintained on an FTP site for retrieval and
analysis. 

The NILM was conceived as a means of reducing the
cost of obtaining electrical-power data, and it is worth
making a rough assessment of costs and benefits relative to
currently available metering technologies. The costs can be
compared with conventional AC watt transducers, which
require a voltage tap and current transducers on the input side
and produce as output a low-voltage or current signal propor-
tional to power. Both the NILM and a watt transducer require
a personal computer to collect data. This computer can stand
alone as an independent data logger or can be the same
personal computer used for an energy management system.
Both the NILM and a watt transducer require an A/D board to
digitize analog information for the PC. This information is
voltage and current data for the NILM and the power data for
the watt transducer. Both the NILM and the watt transducer
require current transducers and a voltage tap. The NILM can
use the same PC, A/D board, current transducers, and voltage
tap as the watt transducer. The NILM eliminates the watt
transducer itself, performing the convolution of current and
voltage in software, but requires an inexpensive voltage
transducer ($25 for a research-grade transducer and a fraction
of that for a transducer of adequate bandwidth) to lower the
line voltage to a level appropriate for the A/D converter. The
cost of the NILM is therefore comparable to a submeter, even
if the goal is to monitor a single load. Multiple loads require
multiple watt transducers, each with current transducers. A
single-phase watt transducer with current transducer costs
about $250-300. There were six loads of prime interest at the
motor-control center in the ASHRAE test building: three
supply fans and three chilled-water pumps. The costs are
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comparable for the first fan and the NILM saves the $1250-
1500 required for the remaining two fans and three pumps.

More testing is required to determine whether the
NILM can consistently produce power data of accuracy suit-
able for its intended use. Until these tests are done, subme-
tered data remain the standard. But the NILM should not be
evaluated as a trade-off between cost and measurement
accuracy. It is a flexible platform that generates a data
stream far richer than a submeter produces and that can
analyze that data in ways limited only by the imagination of
an engineer and skill of a programmer. For example, the
power harmonics it calculates can be used for power-qual-
ity assessments and for identifying loads that generate
certain harmonics. It can analyze very rapid start-up tran-
sients (Shaw et al. 2002) as a means of detecting faults in
equipment performance and can detect power oscillations
that are associated with actuator wear. 

CONCLUSIONS

In principle, low-cost information about individual elec-
trical components in a building can be obtained via careful
analysis of power measurements at central locations within the
building, notably the electrical service entrance and motor-
control centers that supply power to HVAC components.
Visual analysis of electrical power sampled at appropriate
speeds shows step changes that can be associated with equip-
ment of interest. The development of a reliable automatic
detector suitable for use in noisy and complex electrical envi-
ronments has involved selection of the basic statistical
approach, development of guidelines for tuning the detector,
and innovations that improve performance (enhanced sensi-
tivity to signals of interest and rejection of electrical noise).
Further work has extended the detection approach to identify
sustained power oscillations, indicative of poorly tuned
controllers, as well as step changes, and to operate on data

Figure 12 Electrical schematic showing location of the two NILM meters at the test building. Sensors labeled
LA55-P, LA305-P, and LT505-S are 50A, 300A, and 500A Hall-effect current sensors. LV25-P is an
isolated voltage sensor.
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sampled at multiple rates, in order to fill in missing events and
reject false alarms that may be generated from a single data set.
Test results show that the centralized or non-intrusive load
monitor can detect all on-off events of interest in some data
sets from real buildings and that further work is required to
automate the process of tuning detector parameters. With
other data sets, the detector detected most, but not all, events.
Further testing in other buildings is required, particularly to
evaluate and automate the steps needed to tune the detector. In
recent years of development, the detector's capabilities have
been enhanced while the hardware cost has decreased, encour-
aging future development.
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DISCUSSION
Rick Danks, Masa Glenn Research Center, Cleveland,
Ohio: 1) Was the power distribution checked for integrity to
avoid false readings due to loose connections, etc.? 2) Can this
system distinguish between system problems (some listed
above) and equipment problems?
Leslie K. Norford: The power-distribution system in the test
building was very well maintained and of recent vintage. It
was inspected visually during the installation of the two
centrally located power monitors but was not subjected to
other tests. The monitors are capable of detecting a side vari-
ety of problems but must be programmed accordingly. A
reasonable analogy is that of a spot light that must be pointed
in the right direction to reveal an object of interest, in contrast
with a flood light that requires less tuning but reveals less
detail. The monitors can be used to detect and diagnose such
system problems as voltage sags due to start-up of large
components, which may cause other equipment to abruptly
shut down. With one-time measurements of impedances in the
building electrical system, the monitor can estimate the volt-
age distortion at any point in the building. At the equipment
level, the monitor can detect faulty electrical contactors.
Grant Wichenko, Appin Associates, Winnipeg, Canada:
1) Have you used power quality monitoring? 2) What can be
determined with you system that you cannot get with a normal
DDC system? 3) What resolution do you need to make sense
of the data?
Norford: The electrical monitoring system we describe takes
current and voltage measurements at high speed, calculates
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harmonics of real and reactive power, and is capable of power-
quality monitoring. A normal Building Energy Management
System (BEMS) is not used for detection and diagnosis of
HVAC faults. Extensive recent research, inside and outside
ASHRAE, is producing FDD techniques that could be
included in a BEMS. Our approach makes use of electrical-
power data and could be used in lieu of or in addition to
approaches that make use of thermofluid data (temperatures
and flows). Further, our system is capable of finding some
faults, such as misalignment in a motor-belt fan system, that
thermal modeling would probably not detect.

Equipment-specific energy consumption is also impor-
tant to building operators. In a conventional system, it is
necessary to install expensive watt meters on each component
of interest, an approach that is rarely taken due to cost. We are

conducting field tests to determine whether we can provide an
acceptable estimate of equipment-specific power via high-
speed monitoring from a single point, a less expensive alter-
native.

The resolution required to make sense of the data depends
on the application. We sample the current 128 times per line
cycle, or 7,680 Hz. From these current data, we calculate real
and reactive power and the fundamental and higher harmonics
and produce a data stream at 120 Hz. We have down-sampled
these data to obtain data at 1-10 Hz for FDD, based on step-
changes in electrical power that indicate whether or not a
pump, fan, or chiller has turned on or off. More fruitfully, we
use the higher-speed data stream to resolve the start-up tran-
sients of motor-driven loads. These transients are very short,
on the order of a second.



California Energy Commission 
Public Interest Energy Research Program 

HPCBS # E5P22T3b 
 

High Performance Commercial Building Sy
Detection and Diagnosis of HVAC Faults via Electrical Load Monitoring 
 
Element 5 -  Integrated Commissioning and Diagnostics 
Project 2.2 - Monitoring and Commissioning of Existing Buildings 

 

S.R. Shaw, Montana State University 
L.K. Norford and S.B. Leeb, Massachusetts Institute of Technology 
D. Luo, United Technologies Corp. 
 
 
VOL. 8, NO. 1  
HVAC&R RESEARCH  
January, 2002 
stems 
 



Acknowledgement 
 
This work was supported by the California Energy Commission, Public Interest Energy 
Research Program, under Contract No. 400-99-012 and by the Assistant Secretary for 
Energy Efficiency and Renewable Energy, Building Technologies Program of the U.S. 
Department of Energy under Contract No. DE-AC03-76SF00098. 
 
 
 
 
 
 
 
 
 
 

DISCLAIMER 
 
This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor The Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or The Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof, or The Regents of 
the University of California. 
 
This report was prepared as a result of work sponsored by the California Energy 
Commission (Commission).  It does not necessarily represent the views of the 
Commission, its employees, or the State of California.  The Commission, the State of 
California, its employees, contractors, and subcontractors make no warranty, express or 
implied, and assume no legal liability for the information in this report; nor does any 
party represent that the use of this information will not infringe upon privately owned 
rights.  This report has not been approved or disapproved by the Commission nor has the 
Commission passed upon the accuracy or adequacy of the information in this report. 

 



VOL. 8, NO. 1 HVAC&R RESEARCH JANUARY 2002

13

Copyright 2002, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org).
Reprinted by permission from the International HVAC&R Research Journal, Volume 8, No. 1, January 2002. This
article may not be copied nor distributed in either paper or digital form without ASHRAE's permission.

Detection and Diagnosis of HVAC Faults via 
Electrical Load Monitoring

S.R. Shaw, Ph.D. L.K. Norford, Ph.D. D. Luo, Ph.D. S.B. Leeb, Ph.D.
Member ASHRAE Student Member ASHRAE

Detection and diagnosis of faults (FDD) in HVAC equipment have typically relied on measure-
ments of variables available to a control system, including temperatures, flows, pressures, and
actuator control signals. Electrical power at the level of a fan, pump, or chiller has been gener-
ally ignored because power meters are rarely installed at individual loads. This paper presents
two techniques for using electrical power data for detecting and diagnosing a number of faults
in air-handling units. The results from the two techniques are compared and the situation for
which each is applicable is assessed.

One technique relies on gray-box correlations of electrical power with such exogenous vari-
ables as airflow or motor speed. This technique has been implemented with short-term average
electrical power measured by dedicated submeters. With somewhat reduced resolution, it has
also been implemented with a high-speed, centralized power meter that provides component-
specific power information via analysis of the step changes in power that occur when a given
device turns on or off. This technique was developed to detect and diagnose a limited number of
air handler faults and is shown to work well with data taken from a test building. A detailed
evaluation of the method is presented in the companion paper, which documents the results of a
series of semiblind tests.

The second technique relies on physical models of the electromechanical dynamics that occur
immediately after a motor is turned on. This technique has been demonstrated with submetered
data for a pump and for a fan. Tests showed that several faults could be successfully detected
from motor startup data alone. While the method relies solely on generally stable and accurate
voltage and current sensors, thereby avoiding problems with flow and temperature sensors used
in other fault detection methods, it requires electrical data taken directly at the motor, down-
stream of variable-speed drives, where current sensors would not be installed for control or
load-monitoring purposes.

INTRODUCTION
The performance of many HVAC systems is limited more by poor installation, commission-

ing and maintenance than by poor design (Tong 1989). Computer-based control systems have
the capability to collect and store sensor and control signals that could be analyzed to detect and
diagnose faults. A considerable amount of research work has been carried out to develop FDD
techniques for HVAC systems and, recently, to test these techniques in realistic laboratory set-
tings and in real buildings (Ahn et al. 2001; Chen and Braun 2001; Dexter and Benouarets 1996;
Dexter and Ngo 2001; Haves et al. 1996a; House et al. 2001; Hyvarinen 1996; Lee et al. 1996a,
1996b; Li et al. 1996; Peitsman and Bakker 1996; Salsbury 1996; Stylianou and Nikanpour
1996; Tsutsui and Kamimura 1996; Yoshida et al. 1996). 

Steven R. Shaw is an assistant professor at Montana State University, Leslie K. Norford and Steven B. Leeb are asso-
ciate professors with the Massachusetts Institute of Technology, and Dong Luo is a senior engineer with United Tech-
nologies Corporation.
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A fault is detected when the observed behavior of a system differs from the expected behavior
by some threshold. The expected behavior of the system is often expressed in a model, whether
physical, statistical or fuzzy. The number of measurements required to use a given model for
fault detection is of central importance, as there is a cost associated with installation and mainte-
nance of sensors that are not required by the control system.

A fault is diagnosed when it is detected and a cause is determined. Diagnosis is significantly
more difficult than detection, because measured effects must be attributed to a particular cause
to the exclusion of all other possibilities. The difficulty of diagnosis increases with the number
of possible causes, and careful validation in the context of the target application is required for
any proposed diagnostic technique.

Current approaches to HVAC FDD have been driven by the confidence researchers have in their
own modeling approach�its ease of implementation, robustness, and ability to generalize to many
different HVAC faults�and in the availability and accuracy of measured data. The approach in
this paper begins with the premise that electrical power measurements are useful in FDD, based on
the authors� experience extracting device-level information from centralized power measurements.
The paper presents FDD techniques using submetered power data that, in some cases, may be
readily adapted for use with centralized measurements. Whether these techniques are economically
and technically useful needs to be explored in the field over the coming years.

There are four generic approaches to consider for use of electrical power data in HVAC FDD,
as shown in Table 1. Power signals can be obtained from meters attached to fans, pumps, chill-
ers, or other individual pieces of electrically powered HVAC equipment. Alternatively, power
data can be collected at a single point. Further, detection and diagnosis of faults can be based on
analysis of changes in steady-state electrical power, or analysis of the dynamic variation of
power during the typically very brief startup transient. For submetered power, steady-state is
defined as one-minute averages at times other than those encompassing a startup or shutdown
event or substantial power oscillation. In contrast, for centralized power measurements, steady-
state power is the difference in power before and after a turn-on or turn-off event. Techniques
presented in this paper cover three of the four approaches, as noted in Table 1. The detection and
diagnosis of faults from startup transients recorded centrally, the most powerful but difficult
method, has not been attempted to date.

Centralized load monitoring takes its name of Non-Intrusive Load Monitoring (NILM) from
its origins in load analysis in houses, where the normal revenue meter was replaced by a meter
capable of clustering step changes in real and reactive power and associating these clusters with
major household appliances (Hart 1992). Over the last decade, the early techniques have been
extended in two directions. First, enhanced detection of step changes in power have been shown
to screen out power spikes caused by switching electronics and to find power oscillations caused
by poorly tuned controllers (Norford and Mabey 1992, Hill 1995, Luo et al. 2002). Second, a
powerful detection approach has been developed to analyze the rapid changes in power that
occur when a motor, lamp, or computer is first turned on (Leeb 1993, Leeb et al. 1995, Norford
and Leeb 1996, Abler et al. 1998). The startup patterns are governed by the physics of the device
and are generally not masked by power electronics that reduce reactive power. In addition, anal-

Table 1. Options for Detecting and Diagnosing HVAC Faults by Analyzing Electrical 
Power Signals Explored in this Paper

Location of Meters
Analysis of Changes in

Steady-State Power
Analysis of Power Dynamics During 

Equipment Startup
Individual loads X X
Centralized X
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ysis of startup transients is useful in a busy electrical environment, due to the very brief amount
of time (typically fractions of a second) required to log a characteristic signal. Both approaches
to centralized load monitoring rely on a combined hardware/software platform that is consider-
ably more capable than the typical Watt meter and of comparable cost. This platform has been
refined to the extent that it consists solely of the necessary transducers fed into a personal com-
puter for analysis and communication via the internet.

This paper focuses on the use of electrical power signals for HVAC FDD and not on central-
ized load monitoring. One major motivation for this work has been an ASHRAE-sponsored
research project, 1020-RP, �Demonstration of Fault Detection and Diagnosis Methods in a Real
Building.� In this project, one electrical power FDD approach, using gray-box correlations of
steady-state changes in electrical power with flow or other variables, was tested on three vari-
able air volume (VAV) air-handling units (AHUs) in a heavily instrumented test building. A
second FDD approach (not required for 1020-RP) was also tested with data from the test build-
ing. This approach uses a physical model of the dynamics of a motor and driven load during a
startup transient. Parameters estimated solely from electrical current measurements are com-
pared with parameters estimated during periods of normal behavior to detect faults. 

The HVAC system, diagrammed and described more fully in the companion paper, Norford
et al. (2002), includes variable-speed supply and return fans, constant supply-air and chilled
water temperature control, and a primary-secondary pumping system with constant-speed sec-
ondary pumps. The seven AHU faults included in these tests, listed in Table 2, are featured in
this paper. Table 2 notes whether the selected faults were abrupt or occurred slowly over time;
as implemented in the test building, abrupt faults were introduced as such and degradation faults
were introduced over one- to three-day periods. Electrical power FDD methods are no different
from others in their ability to find abrupt faults more easily than degradations. 

Test results presented in this paper are limited to the faults introduced in the test building and
as such are demonstrations of the methods rather than comprehensive assessments of their effi-
cacy. A final report and the companion paper (Norford et al. 2000, 2002) summarize the results
of the blind tests conducted as part of 1020-RP. This paper, in effect, lays a foundation for the
summary paper.

While the presentation focuses on a small number of artificially introduced faults, the pre-
sented FDD methods can in principle be extended to cover additional AHU faults and faults in
other systems. The obvious prerequisite is that any fault to be detected by these methods must

Table 2. List of Air-Handling Unit Faults Detected and Diagnosed
with Electrical Power Data

Fault Type
Air Mixing Section

Stuck-closed recirculation damper Abrupt
Leaking recirculation damper Degradation

Filter-Coil Section
Leaking cooling coil valve Degradation
Reduced coil capacity (water-side) Degradation 

Fan 
Drifting pressure sensor Degradation
Unstable supply fan controller Abrupt
Slipping supply fan belt Degradation

Note: Fault implementation is described in Norford et al. (2002).
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cause a change in electrical power. Further, the power change must be sufficiently large to cause
a noticeable deviation from expected behavior, which in turn must be defined on the basis of
gray-box power correlations using steady-state data or a physical model of a motor�s startup
transient. The gray-box power correlations require an understanding of the physics of the system
under investigation, to determine power correlations suitable for detecting a given fault. The
method therefore requires a considerable amount of expert knowledge to be made more gener-
ally applicable. 

APPROACH
A. Detection and Diagnosis of HVAC Faults with Gray-Box Models and Subme-

tered Electrical Power Measurements Under Steady-State Conditions

The gray-box electrical power method for fault detection and diagnosis rests on the following
four steps:

1. A training phase, consisting of correlation of electrical power as measured under steady-state
conditions with load measurements (gray-box models)

2. Measurement of electrical power
3. Detection of faults by comparison of measured and predicted electrical power and by screen-

ing for rapid power oscillations
4. Diagnosis of faults by rule-based analysis of power deviations

The gray-box method requires that fan, pump, and chiller power be correlated with an indica-
tor of load for each electrical component. These correlations establish models for detecting
equipment faults. For equipment such as that installed in the test building, Tables 3 and 4 sum-
marize how these correlations depend on building thermal loads, as expressed by outside tem-
perature in each of four regions: 

1. Tout < Tbalance point

2. Tbalance point < Tout < Tsupply air � ∆Tsupply fan

3. Tsupply air � ∆Tsupply fan < Tout < Treturn air

4. Treturn air < Tout

The balance point temperature is the outside dry-bulb temperature at which the building
requires neither heating nor cooling. In commercial buildings, Tbalance point accounts for a mini-
mum intake of outdoor air required to satisfy ASHRAE Standard 62. Above Tbalance point there
is a net cooling load and the supply airflow will increase. In some cases, Tbalance point may
exceed Tsupply air, in which case the two are simply exchanged in the temperature segments. The
supply air temperature is assumed to be constant, as was the case in the test building. In Table 4,
the coil capacity and slipping fan belt faults are best detected at high cooling loads but can be
detected at lower loads if sufficiently severe.

Correlations of Fan Power with Airflow
If electrical power measurements for HVAC equipment are used as the basis for an FDD

method, there must be some model of power under known load conditions. Studies have estab-
lished that whole-building fuel use correlates with outdoor temperature (Fels 1986, Ruch and
Claridge 1992). At the device level, fan power is of key importance in detecting many AHU
faults. Previous work (Lorenzetti and Norford 1992) showed that hourly average power mea-
surements for VAV supply and return fans correlate well with outdoor dry-bulb temperature. A
simple three-variable change-point model was found to work as well as or better than other
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models fitted to these data. Outdoor dry-bulb temperature is a reasonable predictor because the
sensible fraction of envelope loads (latent heat transfer excluded) influences the total amount of
air delivered to occupied spaces. However, this predictor does not account for variations in air-
flow, and hence fan power, due to changes in internal or solar loads. Correlations with measured
airflow provide a more precise estimate of fan power, as established in an earlier study of appli-
cations of electrical load monitoring to fault detection in ventilation systems (Norford and Little
1993). Such correlations have also been used to estimate fan energy consumption before and
after variable-speed drive retrofits (Englander and Norford 1992).

Figure 1 shows a third-order polynomial correlation between fan power and airflow for a
VAV supply fan with a variable-speed drive. The use of a third-order polynomial correlation is
based on the fan laws, which show that power varies as a cubic function of speed for a variable-
speed centrifugal fan. A similar correlation has also provided a good fit in practice for data col-
lected from VAV fans equipped with inlet vanes. Ninety percent confidence intervals were
established from uncertainties in the polynomial coefficients and a t-statistic. The confidence
intervals express the confidence that a single new measurement point will lie between the upper
and lower intervals, if the measurement is subject to the same conditions as occurred during the
training phase. Increasing the confidence interval would make the method less sensitive to faults
and less likely to generate false alarms. In the test building, the use of 90% confidence intervals
did not generate false alarms, but in practice the confidence interval could be enlarged, reducing
the number of both detected faults and false alarms. To tighten the correlation and improve the
sensitivity of the method, only training data with duct static pressure within 25 Pa (0.1 in. of
water) of the 300 Pa (1.2 in. of water) set point were accepted. This tolerance on duct  static
pressure was arbitrarily selected after the data were examined by eye and was intended to elimi-

Table 3. Variation of Outside and Supply Airflows and Pump, Chiller, and
Fan Powers with Touta

Temperature Region 
and Control Mode

Outside 
Airflow

Supply 
Airflow

Pump
Power

Chiller
Power

Fan
Power

1 Heating Constant at 
minimum 
value

Constant at 
minimum 
value

Off Off Constant at 
minimum
value

2 Free cooling via air-
side economizer

Increasing 
with Tout

Increasing 
with Tout

On; constant 
power

Energized; minimal 
power to meet thermal 
loads in piping

Increasing as a 
polynomial function 
of flow or speed

3 Mechanical cooling 
with 100% outside 
airflow

Increasing 
with Tout

Increasing 
with Tout

Nearly constant 
power if piping
is balanced

Increasing with Tout Increasing as a 
polynomial function 
of flow or speed

4 Mechanical cooling 
with minimum 
outside airflow

Constant at 
minimum 
value

Increasing 
with Tout

Nearly constant 
power if piping
is balanced

Increasing with Tout Increasing as a 
polynomial function 
of flow or speed

aFor a VAV system with variable-speed supply and return fans, constant supply air temperature, and a constant-speed
secondary chilled water pump.

Table 4. Detectability of Faults with Electrical Power Data

Temperature 
Region

Stuck-Closed 
Recirculation 

Damper

Leaky 
Recirculation 

Damper

Leaky 
Cooling 

Coil Valve

Reduced 
Cooling 

Coil Capacity

Pressure 
Sensor 
Drift

Unstable 
Pressure 

Controller

Slipping 
Supply Fan 

Belt
1 Yes No No No Yes Yes Maybe
2 No No Yes No Yes Yes Maybe
3 No Yes No Maybe Yes Yes Maybe
4 Yes No No Yes Yes Yes Yes
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nate data points collected during system transients when the supply fan speed was changing to
bring the duct static pressure back to the set point.

This method has the desirable property that the threshold for fault detection is determined
solely by the selection of a desired confidence interval and the distribution of data during the
training phase. For example, unevenly distributed data sets will cause the confidence intervals to
expand in airflow regions where data are scarce (Norford and Little 1993). The threshold for fault
detection at any flow is therefore not arbitrary but is statistically defensible, under the major
assumption that data collected during the training phase represent normal operation of the AHU.

Correlations of power with flow can be used to detect faults involving duct pressure, includ-
ing pressure sensor faults, stuck dampers, and fouled filters. Figure 2 shows data well outside
the confidence intervals, obtained in a fault condition when air was bled from the static pressure

Figure 1. Correlation of Fan Power with Airflow During a Training Period
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sensor�s pneumatic line to simulate an offset in the static pressure sensor. The offset was intro-
duced in three stages of 50, 100, and 150 Pa (0.2, 0.4, and 0.6 in. of water), with the most
extreme case illustrated in Figure 2.

The correlation shown in Figures 1 and 2 can be used to detect a pressure sensor offset, either
positive or negative, at any time of year. The same correlation can also be used to detect the
stuck-closed recirculation-damper fault, but only under conditions identified in Table 4, where
the damper would normally be wide open or nearly so. Under such conditions, a stuck-closed
damper will increase the pressure drop in the air handler and therefore increase fan power for a
given airflow.

Correlations of Fan Power with Fan-Motor Speed-Control Signal

Some faults can be detected when power is correlated with motor speed control signal,
rather than airflow. For example, reduced tension in a fan belt can cause the belt to slip and
transmit less mechanical energy from the motor to the fan at high load. If there is relatively
little dissipation of energy in the loose belt, then, for a given motor speed, the motor draws
less power and the airflow is lower. Fan motor power is not expected to change significantly
for a given airflow. However, the power drawn by the motor for a given rotational speed will
be less than normal, because the fan is not spinning as fast as it normally would and therefore
transfers less power to the air. This fault can therefore be detected by a deviation from the
expected relationship between fan power and the motor speed control signal, as shown in Fig-
ure 3. It is important to note that the power-speed correlation is immune to changes in duct
pressures that can be detected with the power-flow correlation, as was established in Norford
and Little (1993). As a result, the method for detecting the slipping fan belt is also sufficient
to distinguish it from the faults detected with the power-flow correlation. However, a power-
speed correlation will detect such additional faults as a loose pulley or a transducer failure,
making fault diagnosis problematic. Figure 4 shows a transducer failure implemented in the
test building.

Figure 3. Reduction of Fan Power at Very High Speed-Control Signals, 
Due to Slipping Fan Belt
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Correlation of Chilled Water Pump Power with Cooling Coil Valve Position

Changes in pump power can be used to detect blockages in piping, in the same manner as
using fan power to detect stuck dampers. In many buildings with a single chilled water loop, the
chilled water pump is run at constant speed and flow to the cooling coil is controlled with a
three-way valve. The pump will ride the pump curve as flow resistance changes and pump
power will change accordingly. Flow resistance can change due to normal operation (operation
of the three-way valve to control flow to the coil, which has a larger flow resistance than the by-
pass piping unless the latter includes a balancing valve) or due to a fault (flow obstruction). With

Figure 4. Reduction of Fan Power at High Values of Speed-Control Signal,
as Result of Controller Failure

The top figure shows the fit to data from a single day of normal operation. The lower figure shows data 
during a three-hour period when the fan speed was fixed at a single value, over a range of speed-control 
inputs.
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a two-way valve in lieu of a three-way valve, pump power will vary more strongly with valve
position. While changes in pump power are an attractive means of detecting flow-restriction
faults, chilled water flow is rarely measured and therefore is not a desirable correlating variable.
The one available control signal, which adjusts the position of the cooling coil valve (either two-
way or three-way) was used.

The test building has a primary-secondary piping system, with a variable-speed primary
pump and constant-speed secondary pumps for the two test air handlers. Initially, the cooling
loops used two-way valves to control flow to the air-handler cooling coils, but these valves
were replaced with pairs of two-way valves that are controlled to perform as three-way
valves. Further, flow balancing valves were installed to equalize the pressure drop across the
coil and the bypass piping. The pump power under normal operation is expected to be nearly
independent of valve position. If there is a flow restriction in a cooling coil when balancing
valves are installed and used properly, it is expected that there will be less flow through the
coil; the discharge air temperature will tend to rise above its set point; the valve controller will
open the valve to send more flow through the coil and less to the bypass loop; the overall flow
resistance will increase and the pump will ride up the pump curve to a lower total flow and
reduced pump power. 

Correlating pump power with valve control signal is therefore sufficient to detect flow block-
ages under cooling loads sufficiently high that a substantial fraction of the total flow is directed
through the coil. However, it is not likely to detect coil fouling, where a very thin coating of cal-
cium carbonate can drastically reduce heat transfer across the coil but can have a small impact
on flow resistance. The change in pump power as correlated with valve position is illustrated in
Figure 5. The training period did not include system loads large enough to cause the cooling coil
valve to open more than 70%. Pump power was assumed to remain nearly constant under higher
flows through the cooling coil.

Chiller power can provide another indication of faults in chilled water piping. For low to
moderate cooling loads, the valve controller will compensate for a flow restriction in the cooling
coil by directing more water to the coil and less to the bypass piping. Under high cooling loads,
the valve controller will saturate, flow through the coil will be less than needed to maintain the
discharge-air temperature, the building will be undercooled, and chiller power will therefore
drop. Monitoring to determine a reduction in chiller power at high load also offers the advantage
of detecting not only flow-restriction faults but also reduced thermal conductivity due to depos-
its on the water side of the cooling coil. 

Whole-building energy studies have correlated building electricity consumption with outside
temperature as a means of analyzing the building�s energy requirements for cooling, typically
with linear change-point models (Ruch and Claridge 1992, Ruch et al. 1993). More detailed
studies of chiller power have established that chiller power is primarily a function of load on the
chiller and the temperature difference between leaving condenser water and chilled water flows,
and that a biquadratic functional form is a reasonable model (Braun et al. 1987). For an air-
cooled chiller as is used in the test building, outside air temperature directly affects condenser
performance. 

In this study, an HVACSIM+ simulation of a building modeled for a controls simulation test
bed (Haves et al. 1996b, 1998) was used to correlate cooling load, as measured by heat transfer
across the cooling coil, against outdoor temperature. It was possible to detect a fouled coil. This
method was not applied in the test building to detect the coil capacity fault because the chiller is
a two-stage reciprocating unit and power levels are discrete, rather than continuously varying.
Cycling periods between states were not regular and not easily discerned at high loads. At low
cooling loads, however, chiller cycling was both regular and revealing of certain faults, as will
be discussed.
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Figure 5. Correlation of Pump Power with Valve Position, for Normal Conditions and for 
Reduction in Cooling Coil Capacity Due to Obstruction in Chilled Water Piping
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Analysis of Reciprocating Chiller Cycling Periods
Cycling periods for the two-stage reciprocating chiller, between shutdown and the low-power

state, can be analyzed to detect such faults as a leaky recirculation damper and a leaky cooling
coil valve. Both of these faults can be detected only at low cooling loads, when the recirculation
damper would normally be shut by the air-side economizer and when the cooling coil valve
would be normally closed. Under low loads, a reciprocating chiller will cycle on for a short
period and then shut down for a longer period, controlled to maintain the chilled water tempera-
ture returning to the chiller within a specified band. For the leaky recirculation damper, the
chiller cycling period can be analyzed in a narrow band of outside temperatures, just above the
point where the cooling coil valve starts to open and there is a cooling load across the coil. (This
corresponds to the boundary between outdoor temperature regions 2 and 3, as defined above.)
Limiting the analysis window to a narrow band guards against labeling as a fault those changes
in cycling period that are due to a normal increase in cooling load with outside temperature.

This approach works well when outdoor temperatures exceed the supply air temperature set
point by a small fraction of the supply-return temperature difference (20% has been used as a
cutoff), and, importantly, remain in this region long enough to detect a stable chiller cycling pat-
tern. When the outdoor temperature rises and the building cooling load increases, as is the case
on many days, chiller-cycling period is not a good fault detection metric. 

The leaky cooling coil valve will increase the load on the chiller for a given valve position. It
is difficult to correlate changes in reciprocating chiller cycling periods with valve position, due
to the coarse nature of the former. An acceptable alternative is to analyze changes in chiller-
cycling period when the valve control signal is zero and the valve is nominally shut. This
approach is relatively robust, with less chance for false alarms than if chiller-cycling data were
considered when the valve is partially open. It also distinguishes the symptoms of this fault from
the leaky recirculation damper.

Figure 6 shows a chiller-cycling period of 20 to 25 min. when the cooling coil valve was
closed, much shorter than the normal cycling period of 38 to 39 min. observed earlier the same
day and indicative of a leaky valve. The cycling interval dropped to 14 to 15 min. when the cool-
ing coil valve was about 20% open later in the day, a period excluded from analysis.

Analysis of Fan Power Oscillations
Norford and Leeb (1996) showed that centralized power monitoring could detect chiller-

power oscillations due to an unstable chilled water temperature controller. Screening for rapid
power oscillations forms the basis for detecting faults caused by underdamped or unstable local-
loop controllers. Power oscillations are quantified by the standard deviation of the data sampled
in a sliding window. In the test building, this approach has been used to detect an unstable
pressure-control-loop fault in the test building, as shown in Figure 7.

B. Detection and Diagnosis of HVAC Faults with Gray-Box Models and 
Centralized Electrical Power Measurements Under Steady-State Conditions

The steady-state, gray-box FDD method was also evaluated when the electrical power data
came from centrally located power meters rather than submeters dedicated to individual compo-
nents. Two centralized meters, known as Non-Intrusive Load Monitors (NILMs), were installed
in the test building, one on the motor control center serving five fans and ten pumps, and one at
the whole-building electrical service entry. A detailed development of the signal-processing
algorithms needed to detect steady-state changes in HVAC loads is presented in Luo et al.
(2002). The use of the centralized meters to detect classes of faults, including six of the seven
introduced in the test-building air handlers, is briefly described.
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The power-flow correlation for the fan that was readily made with submetered power data
could not be generated with electrical power measurements from the NILM installed on the
motor control center in the test building. The NILM yielded one data point per day, when the fan
was turned off in the evening. The startup point was not valuable because the fan motor has a
variable-speed drive that has a slow and complex startup pattern that is very different from an
abrupt change most easily seen by the change-of-mean detection algorithm applied to data col-
lected by the NILM. Further, there was little variation in flow at the time of fan shutdown and no
opportunity to generate a polynomial relationship between power and flow. The limited range of
data also made it impossible to correlate fan power with the motor-speed-control signal, a corre-
lation established with submetered data and used to detect and diagnose the slipping fan belt. 

The fact that airflow, fan speed and fan power showed little variation at shutdown from day to
day, due to nearly constant (and very light) building loads in late evening, made it possible to
use deviation of fan power from the normal value as a basis for fault detection. For example,
when the fan belt in the test building slipped severely, the fan power was about 750 W with a

Figure 6. Detection of Leaky Cooling Coil Valve by Analysis of Cycling Period
of Reciprocating Chiller
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100% motor speed control signal at shutdown, compared to a normal speed of about 20% and a
normal power of about 500 W. 

Supply fan electrical power of 600 W at shutdown, 100 W above the typical value, was taken
as a threshold above which a fault was flagged. This value, selected after examination of the
data, proved acceptable in that it did not generate false alarms in the test building. Among
the limited number of faults introduced into the test building, the three possible causes were the
stuck-closed recirculation damper, an offset in the supply duct static pressure sensor, and
the slipping fan belt. Power data alone were sufficient to detect these faults but not to diagnose
them. Motor speed data would separate the slipping fan belt from the two faults that are driven
by pressure changes.

Figure 8 shows fan power as estimated by the NILM and the supply fan submeter. Power is
plotted against airflow to show the limited range of airflows at shutdown, compared with the
operating range shown earlier in Figures 1 and 2. The NILM estimate of power is systematically
lower than the submeter, a discrepancy that stems from the difference between one-minute

Figure 7. Detection of Unstable Pressure Controller via
Analysis of Standard Deviation of Supply Fan Electrical Power
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power averages as used in the submeter and the NILM�s calculation of power on the basis of
short-term data immediately before and after the shutdown event is detected.

There are two alternative approaches that avoid establishing a somewhat arbitrary power
threshold for detecting faults at the time the fan is shutdown. First, fan power as a function of
flow and static pressure set point can be modeled from manufacturer�s data (Englander and Nor-
ford 1992). The model can be tuned with one or more data points. However, such a model does
not provide the statistical confidence intervals that come from a polynomial fit of power to flow
and a threshold for fault detection would still need to be assigned. Second, fan power data at
times other than shutdown can be used to generate the polynomial relation between fan power
and airflow or motor speed. Power data can be obtained with a portable power meter used during
a commissioning period, or by shutting down the fan several times during a training period,

Figure 8. Detection of Pressure Sensor Offset (Top) and Stuck Closed Recirculation 
Damper (Bottom), via Analysis of Fan Power at Time of Shutdown, as Recorded by 
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when airflows or speeds are at values that span the expected range of operations. As with sub-
metered power data, confidence intervals establish a range over which data are considered to be
normal and no arbitrary threshold is required. Power at shutdown can then be compared with the
expected power for the flow measured at shutdown. This approach was implemented and the
power estimate that came from fitting power to airflow during the training period was found to
closely predict subsequent power measurements made with submeters. 

Submetered power for the secondary chilled water pump was adequate to detect the coil-
capacity fault. However, the pump power was so small that it was difficult to reliably detect
from the NILM at the motor control center, without lowering the detection threshold to the point
where small, unknown, and uninteresting loads were flagged. Further, successful detection of
this fault requires accurate analysis of small changes in the small load. Therefore, the NILM was
not used to detect pump power. 

Luo et al. (2002) describe an effective means for using the meter at the building service entry
to pinpoint chiller cycling, even in a very noisy electrical environment. This method boosts sen-
sitivity and reduces false alarms by sampling the power signal at multiple rates, detecting on-
and off-events for each data set, and combining the results to reconstruct the sequence of on- and
off-events for a given component. 

This method has been used to successfully detect both the leaky cooling coil valve and the
leaky recirculation damper in the test building. As noted in the discussion of FDD with subme-
ters, the two faults were distinguished by insisting that the cooling coil valve be closed as a pre-
requisite for diagnosing the leaky valve and by focusing on a narrow range of outdoor
temperatures when the recirculation damper should normally be tightly shut and chiller loads are
low. Figure 9 shows the use of the NILM at the building service entry to detect the leaky recircu-
lation damper. The middle plot, based on submetered power data, shows a chiller cycling inter-
val of about 15 min. over a 10-h period when the outdoor dry-bulb temperature was sufficiently
low. The lower plot shows the output of the NILM. Positive changes in power are associated
with the chiller�s going from an off-condition to the lower of its two stages, and negative power
changes signify shutdown events. The NILM detected all of the transitions, which is what was
needed to detect the leaky recirculation damper, although the power the NILM associated with
these transitions differs from the submetered value of 5 kW. The normal cycling period was
observed to be well above the 30-min. threshold established for this fault.

Power oscillations were detected with the NILM attached to the motor control center, indica-
tive of the unstable-supply-duct-pressure-controller fault introduced in the test building. In gen-
eral, fault diagnosis from a central point is not possible. While it may be possible to assign the
magnitude of the power oscillations to classes of equipment (fans, pumps, chillers), it is not pos-
sible to pinpoint a particular fan or pump if there are multiple units of comparable size.

C. Detection and Diagnosis of HVAC Faults with Dynamic Models and 
Submetered Electrical Power Measurements

The chilled water pump and the supply fan associated with AHU-B in the test building were
considered for detection and potential diagnosis of faults using a dynamic-modeling approach.
The method used involves fitting parameters to a physical model of the startup behavior of the
motor and its attached load using only current measurements available at the stator of the motor.
Changes in these physical parameters provide useful HVAC diagnostic information such as flow
obstructions.

Pump Diagnostics
Deposits in the pipes of a heater exchanger are difficult to detect noninvasively and can con-

tribute to decreased heating and cooling efficiency. In principle, it might be possible to detect
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Figure 9. Detection of Leaky Recirculation Damper via Analysis of Reciprocating Chiller 
Cycling Intervals with Outdoor Temperature from 13 to 15°C (55 to 59°F)

The second plot shows submetered chiller power and the lower plot reveals the power changes (positive 
for turn-on, negative for turn-off) detected by the NILM.
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deposits by estimating flow resistance for the fluid in the pipes. Electrical transients were
recorded for a chilled water pump in the HVAC system for both normal and an obstructed-flow
condition. Detection of the obstructed flow is demonstrated via parameter estimation using the
collected data.

A simplified diagram of the chilled water circulation system is shown in Figure 10. The
chilled water system consists of a single, variable-speed primary pump and one fixed-speed sec-
ondary pump for each air handler. For the test, the three-way cooling coil valve was positioned
so that all liquid flowed through the heat exchanger. The primary chilled water pump, equipped
with a variable-frequency drive, was operated to control pressure as indicated. The response of
this control loop was presumed to be slow enough to ignore in comparison to the startup tran-
sients of the secondary pump, CHWP-B. Further, the impact of the primary loop on the second-
ary pump startup transient could be accurately modeled by including the fixed pressure of the
primary loop and not the complete primary loop flow path. To simulate the obstructed flow
fault, the building operators installed a valve in series with the heat exchanger, as indicated. In
the no-fault condition, with both primary and secondary pumps running, flow in the loop was
approximately 1.7 L/s (27 gpm). With the fault in place, flow was reduced to 0.7 L/s (11 gpm),
which is approximately 40% of nominal flow.

The experimental procedure was to introduce the simulated fault, turn CHWP-B on and off a
few times, remove the fault, and again cycle CHWP-B. The resulting startup transients were
recorded and then analyzed off-line.

Transducers were installed to measure current on two of the phases feeding the balanced,
three-phase 480 V pump motor. Data were sampled with 12-bit resolution at 4000 Hz. A typical
transient is shown in Figure 11. Inspection of the data revealed the presence of an unanticipated
fault, consisting of an occasional line-cycle of zero current in the transient. This phenomenon
was attributed to the contactor. Because contactor failure was not part of the model, transients
with contactor problems were discarded. The remaining transients were labeled A, B, C, and D
and will be referred to as such when results are presented. Transients A and B were collected
under fault conditions.

A simple electrical model for the cooling system is an induction machine connected to an
inertia with damping. In addition to the six parameters implied by this simplistic model, it is
necessary to estimate the electrical angle when the motor was turned on and the initial speed of
the motor. Extracting eight parameters from a simple transient as shown in Figure 11 is difficult. 

It was assumed that the fault lay in the mechanical system (i.e., that the motor performance
was the same when comparing two transients). A �joint,� two-transient model was formed

Figure 10. Simplified Diagram of Cooling Loop for AHU-B in Test Building
A single variable-speed primary pump and a fixed-speed secondary pump were used for each air handler. 
An obstructed cooling coil was simulated with a throttling valve. Current to the secondary pump
CHWP-B was measured.
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where identical motor parameters were used for both transients, while the mechanical parame-
ters were allowed to differ for each transient. Mathematically, the model consists of induction
motor equations in what is known as dq space: 

(1)

where ω is the electrical frequency, ωr is the rotor frequency, and the λs are the flux linkages
(Krause 1986). The dq transform is a change of coordinates to a rotating frame, often applied to
variables in electric machines to simplify analysis. The flux linkages are related to the currents by

(2)

These electrical dynamics are influenced by a set of mechanical interactions, one for each
transient:

(3)

Figure 11. Typical Electrical Transient for CHWP-B Motor
The transient is the fault transient labeled �A� in Table 5.
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where the torque of electrical origin for the subscripted system is given by

(4)

The term β1 (β2) is a damping parameter and K1 (K2) is a parameter inversely proportional to
the rotational inertia of the motor and pump. The output equations bring the simulation variables
to the measured currents in the lab frame of reference. For each transient,

(5)

where φ is a parameter representing the electrical turn-on phase for each transient. The complete
parameter vector of each joint model is then

(6)

This parameter vector is then optimized to fit both transients in a given data set, as listed in Table
5. The result is that different mechanical parameters are obtained for each transient, while maintain-
ing common electrical parameters. This model structure encapsulates the assumption that the differ-
ence between the two transients lies in the mechanical system. Parameter identification with
different combinations of transients provides a useful crosscheck of the consistency of the estimates. 

The model fit the data well, as shown in Figure 12. The residuals were small, but not struc-
tureless, as revealed by such typical residual analysis tools as the zero-crossing test and the
Kolmogorov-Smirnov test (Johansson 1993). The model is simple and does not include compli-
cated modeling of the interaction between water and pump. The residuals indicate that a more
complicated model might be feasible with the data available. On the other hand, a more compli-
cated model might cause identification problems with different data sets.

Parameters for the six data sets are shown in Tables 6 and 7. The data sets are separated by
type, as given in Table 5. The parameters in Tables 6 and 7 agree well. In particular, the individ-
ual transients produce remarkably consistent estimates independent of the transients that they
are paired with when fitting a joint model.

It is not necessarily important that the residuals are not structureless. The key issue for diag-
nostic purposes is the robustness of the parameters under perturbations of the measurements
(i.e., whether parameter values are interpreted as faulty or not depends on the disturbances). This
issue can be addressed by making parameter distribution estimates using synthetic data sets.
Synthetic data set estimates of the distributions of the mechanical parameters, under fault and
no-fault conditions with data set P0, appear in Figure 13, which strongly suggests that detection
of the fault would be successful under the presumed disturbance.

Table 5. Data Set Organization for Pump Tests
Data Set Transient 1 Transient 2 Type

P0 A C Fault/No-fault

P1 A D Fault/No-fault

P2 B C Fault/No-fault

P3 A D Fault/No-fault

P4 A B Fault/Fault

P5 C D No-fault/No-fault

τ λ qridr λdriqr�=

i idscos ω 0( )t φ+[ ] iqssin ω 0( )t φ+[ ]�=

µ rrrsLmLlK1β1ω 0( )1φ1K2β2ω 0( )2φ2[ ]′=
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Table 6. Electrical Parameter Estimates by Data Set for Pump Tests

Data Set
Transient Electrical Parameters
1 2 rr rs Lm Ll

P0 A C 1.548e + 01 1.424e + 01 7.266e � 01 3.046e � 02

P1 A D 1.487e + 01 1.418e + 01 7.050e � 01 3.096e � 02

P2 B C 1.529e + 01 1.421e + 01 7.205e � 01 3.061e � 02

P3 A D 1.511e + 01 1.418e + 01 7.132e � 01 3.077e � 02

P4 A B 1.545e + 01 1.380e + 01 7.324e � 01 3.072e � 02

P5 C D 1.499e + 01 1.462e + 01 7.048e � 01 3.046e � 02

Figure 12. Comparison of Model to Experimental Data for Data Set P0
Data with the reduced-flow fault are shown in the upper figure, while fault-free data are in the lower figure. 
The quality of fit is typical of the other data sets. While the fault-free and fault data appear visually similar, 
the differences are sufficient to produce significantly different values for the mechanical parameters.
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Table 7. Mechanical Parameter Estimates by Data Set for Pump Tests

Data Set
Transient Mechanical Parameters

1 2 K1 β1 K2 β2

P0 A C 1.435e + 02 1.544e � 02 1.531e + 02 1.830e � 02

P1 A D 1.415e + 02 1.498e � 02 1.516e + 02 1.771e � 02

P2 B C 1.427e + 02 1.515e � 02 1.531e + 02 1.828e � 02

P3 A D 1.422e + 02 1.534e � 02 1.524e + 02 1.783e � 02

P4 A B 1.415e + 02 1.566e � 02 1.454e + 02 1.540e � 02

P5 C D 1.496e + 02 1.803e � 02 1.487e + 02 1.763e � 02

Figure 13. Distribution Estimates for Mechanical Parameters β and K



34 HVAC&R RESEARCH

Fan Diagnostics
To investigate diagnostic possibilities in ventilation systems, data were collected from one of

the test air-handling units. A diagram of the air-handling unit appears in Figure 14. Transients
from the motor connected to supply fan B were measured, and two kinds of faults were consid-
ered. Unlike the pump situation, two functioning current transducers were available for mea-
surement. For the first diagnostic, the outdoor air damper (indicated on the lower right of Figure
14) was opened to create a gross change in the flow characteristics of the system. The second
diagnostic concern in the air-handling unit was the effect of a slipping fan belt, introduced in the
test building by moving the motor to loosen the belt.

Developing an identification model of a complicated situation like Figure 14 is a challenging
task. As a first assumption, controls (e.g., for the return fan) were assumed to operate on a time
scale much slower than the induction motor startup transient. Also, other aspects of the system
(e.g., state of doors and windows in rooms served by the air-handling unit) were assumed to
remain constant during the test. The joint modeling technique used in the pump diagnostics was
also used (i.e., the induction motor was assumed to be a constant for purposes of comparing two
situations). The mechanical situation was modeled as in the pump scenario, i.e.,

(7)

Unlike the pump diagnostics, two phases of current measurements were available for fan tran-
sients. These measurements were transformed to synchronously rotating dq space (Krause 1986)
for identification. 

Parameter estimates for the fan tests are given in Tables 8 and 9. As with the pump tests, tran-
sients were analyzed in pairs to detect changes in mechanical parameters associated with the
presence of faults. Startup transient A refers to the no-fault situation, B corresponds to the open
outdoor air damper (simulated by opening the mixing box door), C is the slipping belt, and D is
both slipping belt and open door. The electrical parameters of Table 8 should be essentially the

Figure 14. Schematic Diagram of AHU-B
Arrows indicate direction of airflow. Dampers on the right allow building air to be recirculated or mixed to 
varying degrees with outside air. The supply fan was used in the tests.

d
dt
-----ω1 3K1 τ1 β1ω1�( )=

d
dt
-----ω2 3K2 τ2 β2ω2�( )=
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same for all combinations of data sets, because the same motor was used throughout. There is
quite close agreement for parameters rs and Ll and not such good agreement for the magnetizing
inductance Lm and rotor resistance rr. It is possible that the rotor resistance rr might vary due to
thermal effects, but the variation seen in the magnetizing inductance Lm is extreme. It seems
likely that rr and Lm are being influenced by the changes introduced in the mechanical part of
the system. The most suspect combination in Table 8 is the first row.

The mechanical parameters for the six combinations of data sets are given in Table 9. In this
table, parameters with subscript i correspond to the ith transient column. For example, β2 in row
three corresponds to an estimate for data set D (open door, loose belt) in conjunction with data
set A (no-fault). Because the transients appear in different combinations in Table 9, a cross-
validation check of sorts can be performed. Mechanical parameters corresponding to an individ-
ual transient (A, B, C or D) should be roughly the same. Figure 15 aids in this comparison by
plotting the parameters corresponding to different mechanical situations. Note that the �no-
fault� points in Figure 15 are quite distinct from the �fault� points. Also, the outlier in Figure 15
corresponds to the suspect row F0 of Tables 8 and 9.

The parameters in Figure 15 and Table 9 make good physical sense. The situations where the
fan belt is slipping show the lowest friction coefficient. As shown in Figure 14, the slipping fan
belt situation is relatively close to the slipping fan belt and open door scenario. If the motor is
not coupled to the fan, the duct configuration is irrelevant. Physical interpretation of K in Figure
15 is more involved. Because K is inversely proportional to the rotational inertia of the motor-
fan system, larger values of K mean less inertia. The open door scenario has the most coupled
inertia, followed by both slipping fan belt cases, and the no-fault situation has the least inertia.
Because the slipping fan belt essentially uncouples the motor (at least for the startup transient),
the motor should see only the inertia of the rotor and pulley. This hypothesis agrees well with

Figure 15. Scatter Plot Showing Parameters for Each Data Set When Estimated
in Conjunction with Other Data Sets

The nine points in the lower left corner are fault points. Note that the rightmost point corresponds to the 
combination in the first row of Tables 8 and 9, which is suspect.
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the close inertia values obtained for both slipping belt situations. In the no-fault scenario, the
inertia values are lower than in the uncoupled case. This makes sense because the no-fault case
is the only case where the return fan is supplying a force that tends to accelerate the rotor. The
back pressure should not translate exactly into a change in inertia, but its gross effect may, par-
ticularly in the absence of a more complex model. When the outdoor air damper is open, the
coupling of the supply fan to the return fan is greatly lessened, and the effective inertia includes
the air column coupled to the fan. 

The fit of the model to the observations was fairly good (see Figure 16). Note that these
graphs show data that have been dq transformed (Krause 1986). Other mechanical models were
attempted, including adding a γω2 term to Equation (5). These models did not offer much
improvement in the fit, and in some cases it was clear that the data would not support a more
complicated model.

CONCLUSION
Two methods have been developed for using electrical power measurements to detect a num-

ber of HVAC faults. The first, gray-box, method correlates steady-state power with such exoge-
nous variables as flow, motor speed, or actuator control signal. Data that fall outside a tolerance
band around a polynomial correlation indicate a fault. Faults can be diagnosed in limited cases
where there are no other likely faults with the same power signature. The first method also
detects and diagnoses cooling load faults via analysis of the cycling time of a reciprocating com-
pressor. The second method fits high-speed power measurements taken during motor startup
transients to a physical model that includes both electrical and mechanical parameters. Changes
in the mechanical parameters indicate a fault. Both methods were demonstrated with data taken
at a test building, where a modest number of artificial faults were introduced in the air handlers.

The gray-box FDD method was implemented with data from submeters and also, to a lesser
extent, with data from centralized, high-speed electrical load monitors. Fault detection with this
method has been limited to a relatively small range of possible faults in an air handler. Some

Table 8. Electrical Parameter Estimates for Fan Tests

Data Set
Transient Electrical Parameters

1 2 rr rs Lm Ll
F0 A B 2.35e � 01 8.07e � 01 5.84e � 02 4.62e � 03
F1 A C 3.75e � 01 8.15e � 01 9.72e � 02 5.13e � 03
F2 A D 3.99e � 01 7.95e � 01 9.14e � 02 4.99e � 03
F3 B D 2.89e � 01 7.98e � 01 1.17e � 01 4.97e � 03
F4 C B 3.02e � 01 8.06e � 01 9.79e � 02 4.58e � 03
F5 C D 3.26e � 01 8.03e � 01 1.52e � 01 4.78e � 03

Table 9. Mechanical Parameter Estimates for Fan Tests

Data Set
Transient Mechanical Parameters

1 2 K1 β1 K2 β2
F0 A B 3.94e + 02 8.72e � 02 7.51e + 01 7.16e � 02
F1 A C 2.46e + 02 1.41e � 01 1.37e + 02 3.40e � 02
F2 A D 1.92e + 02 1.27e � 01 1.28e + 02 2.93e � 02
F3 B D 5.25e + 02 7.38e � 02 1.62e + 02 3.73e � 02
F4 C B 1.53e + 02 6.26e � 02 4.89e + 01 6.76e � 02
F5 C D 1.43e + 02 5.46e � 02 1.43e + 02 3.67e � 02
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forms of power correlations show more scatter than others and are less useful. For example, a
correlation of fan power with flow has proved to be helpful in detecting changes in flow resis-
tance, but it is more difficult to tightly correlate chiller power with outside temperature as a
means of detecting a fault in an outdoor air temperature sensor. The strength of the correlation
will have a strong impact on the extent to which the method can be extended to detect and diag-
nose a larger set of faults.

Detection and especially diagnosis capabilities were reduced when using a centralized, high-
speed power meter. The centralized meter unavoidably has less resolution than dedicated sub-

Figure 16. Fit of Joint Model to Experimental Data Sets
(a) Tight belt and 100% recirculation and (b) Tight belt and open outdoor air damper
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meters, especially for relatively small pieces of equipment. Further, establishing the power cor-
relations proved to be difficult. The central meter only collects data at equipment startup and
shutdown. At the test building used in this study, startup signals for AHU fans were masked by
the very slow control loop within the variable-speed drives. The secondary chilled water pump
ran continuously, producing no power transients. Further, airflow, fan speed, and fan power at
shutdown showed little deviation from day to day, due to similar system loads in late evening
when the air handlers were turned off. Therefore, the central meter was used only to compare
estimated fan power against a value considered to be normal, on the basis of shutdown measure-
ments over a training period. Using only the power measurement made for an efficient means of
fault detection but diagnosing the cause of the power deviation was not possible. For example, a
deviation in fan power at the normal end-of-day shutdown could be due to a stuck damper or
pressure sensor error. An alternative approach, now under investigation, requires that the fans be
shut down during the day under different loads. With power data from the central meter and cor-
responding flow or speed data, power correlations can be established in the same manner as was
done with submetered data.

While the use of electricity data for FDD was initially motivated by reduction in metering
costs associated with the central meter, the first FDD method may be more appropriately imple-
mented with submetered data if fault diagnosis and not just fault detection is highly valued. Less
expensive sensors and sensor-communication systems (e.g., wireless sensors, to avoid wiring
costs) will facilitate the use of submetered data.

The second method relies solely on submetered data and a physical model, which is more dif-
ficult to formulate than a simple power correlation but is also more powerful. It needs no correl-
ative data, such as flow measurements, and can detect a fault with data collected over the very
short period of time required for a motor to reach a steady speed. However, faults can only be
detected at the time of motor startup, which introduces an unwanted lag between fault introduction
and fault detection. Extending the method to work with data from a centrally located electrical
meter, as will be attempted in the future, is possible in principle if the startup transient for a single
motor is not masked by electrical noise introduced by other components. Limited laboratory tests
have shown that a startup transient can be properly associated with a given motor even when
another motor�s startup partially overlaps the transient under investigation. However, such tests
have not accounted for the sheer volume of events in a real building. Further, variable-speed
drives are potentially a major stumbling block, because their prolonged startup cycle further
masks the dynamics of the motor and driven load. This method is well suited to submetered power
data and may appeal in the future as an onboard diagnostic method for equipment provided with
a low-cost current transducer.

Both methods are potentially more robust than FDD methods that rely on temperature and flow
sensors, in the sense that they do not require estimating small temperature differences with sensors
that are subject to errors. Power measurements also avoid concerns about placement of flow and
temperature sensors in large ducts or pipes. Both methods require testing in more buildings.
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NOMENCLATURE

Tout outside dry-bulb temperature
Tbalance point balance point temperature, the out-

side dry-bulb temperature at which a 
building requires neither heating nor 
cooling

Tsupply air temperature of the supply air
∆Tsupply fan temperature rise across the supply 

fan
Treturn air temperature of the return air
λ flux linkage for an induction motor
ω frequency of excitation at the stator 

of an induction motor 
ωr frequency of the rotor of an induction 

motor
idr direct rotor current in the dq frame
ids direct stator current in the dq frame
iqr quadrature rotor current in the dq 

frame

iqs quadrature stator current in the dq frame
Li leakage inductance of an induction motor 
Lm magnetizing inductance of an induction 

motor
rr electrical resistance of the rotor of an induc-

tion motor
rs electrical resistance of the stator of an 

induction motor
vds direct stator voltage in dq frame
vqs quadrature stator voltage in dq frame
β damping parameter for a system consisting 

of a motor and pump or fan
K parameter inversely proportional to the rota-

tional inertia of the motor and pump or fan
φ the electrical turn-on phase for a motor 

startup transient
NILM non-intrusive electrical load monitor
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Results are presented from controlled field tests of two methods for detecting and diagnosing
faults in HVAC equipment. The tests were conducted in a unique research building that featured
two air-handling units serving matched sets of unoccupied rooms with adjustable internal loads.
Tests were also conducted in the same building on a third air handler serving areas used for
instruction and by building staff. One of the two fault detection and diagnosis (FDD) methods
used first-principles-based models of system components. The data used by this approach were
obtained from sensors typically installed for control purposes. The second method was based on
semiempirical correlations of submetered electrical power with flow rates or process control
signals.

Faults were introduced into the air-mixing, filter-coil, and fan sections of each of the three
air-handling units. In the matched air-handling units, faults were implemented over three blind
test periods (summer, winter, and spring operating conditions). In each test period, the precise
timing of the implementation of the fault conditions was unknown to the researchers. The faults
were, however, selected from an agreed set of conditions and magnitudes, established for each
season. This was necessary to ensure that at least some magnitudes of the faults could be
detected by the FDD methods during the limited test period. Six faults were used for a single
summer test period involving the third air-handling unit. These fault conditions were completely
unknown to the researchers and the test period was truly blind.

The two FDD methods were evaluated on the basis of their sensitivity, robustness, the number
of sensors required, and ease of implementation. Both methods detected nearly all of the faults
in the two matched air-handling units but fewer of the unknown faults in the third air-handling
unit. Fault diagnosis was more difficult than detection. The first-principles-based method mis-
diagnosed several faults. The electrical power correlation method demonstrated greater success
in diagnosis, although the limited number of faults addressed in the tests contributed to this suc-
cess. The first-principles-based models require a larger number of sensors than the electrical
power correlation models, although the latter method requires power meters that are not typi-
cally installed. The first-principles-based models require training data for each subsystem
model to tune the respective parameters so that the model predictions more precisely represent
the target system. This is obtained by an open-loop test procedure. The electrical power correla-
tion method uses polynomial models generated from data collected from �normal� system oper-
ation, under closed-loop control.
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Both methods were found to require further work in three principal areas: to reduce the num-
ber of parameters to be identified; to assess the impact of less expensive or fewer sensors; and
to further automate their implementation. The first-principles-based models also require further
work to improve the robustness of predictions.

INTRODUCTION
In the last decade, a considerable amount of research has been carried out in the field of fault

detection and diagnosis in HVAC systems. Hyvarinen and Karki (1996) summarized the efforts
of an international collaboration [International Energy Agency (IEA) Annex 25] that listed typi-
cal faults in heating systems ranging from oil burners to district heating distribution systems;
vapor-compression and absorption refrigeration machines; variable air volume (VAV) air-
handling units (AHUs); and thermal storage systems. This work also produced a number of fault
detection and diagnosis (FDD) methods:

Innovation approaches
� Physical models
� Time-series models
� State-estimation methods

Parameter-estimation approaches
� Methods based on physical models
� Characteristic curves
� Characteristic parameters

Classification approaches
Topological case-based modeling

� Artificial neural networks
Expert-system approaches

� Rule-based methods
� Associative networks

Qualitative approaches
� Formal qualitative approaches
� Fuzzy models

Many participants in this effort described their own methods; those of a generic nature or that
focused on AHUs include Dexter and Benouarets (1996), Haves et al. (1996), Lee et al. (1996a,
1996b), Salsbury (1996), Yoshida et al. (1996), and Peitsman and Bakker (1996). These meth-
ods were developed and tested with simulations and laboratory test rigs where a high degree of
experimental control can be applied. Such issues as interfaces with commercially available con-
trol systems, identification of the intended users and their needs, and methods for testing and
evaluating the performance of FDD systems in systems installed in real buildings were not
addressed. IEA Annex 34 followed Annex 25 and focused on the practical application of FDD
techniques in real buildings (Dexter and Pakanen 2001). 

ASHRAE sponsored the research described in this paper as a contribution to the global effort
to demonstrate FDD methods in real buildings. This research focused on demonstrating FDD
methods applied to systems installed in real buildings, encompassing the FDD methods, results
from the trials, and the evaluation of the FDD method performance. The three objectives of the
research were to

1. Demonstrate the operation of FDD methods for HVAC systems in a realistic building envi-
ronment
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2. Compare the performance of different FDD methods for different types of faults in AHUs
and to assess the costs of their implementation

3. Archive and document the test data so they can be used to develop and test other FDD
methods

Each of these objectives carried equal weight and each was largely met. This paper reports the
completed work with respect to the first two objectives. A more substantial account and
archived data are available in the final report to ASHRAE (Norford et al. 2000). 

This research considered VAV AHUs only, although the methods can be applied to other types
of HVAC systems. Both methods were based on a reference-model approach, where measure-
ments from the system are compared to model predictions. A significant difference between the
model predictions and the observations indicates that the system has deviated from the expected
operating condition, which is taken to indicate the presence of a fault. The first-principles-based
approach modeled the subsystem components and used fluid (air/water) quantity and property
measurements and control-signal observations. The detection of faults focused on the effect of the
fault condition on the output of the system process. The electrical power correlation method
related electrical power measurements to fluid quantity and property measurements and control-
signal observations; changes in the correlations were considered to be faults.

A description is given of the test building and the HVAC systems. The faults, their implemen-
tation and the FDD methods are described. The results from the four test periods are presented.
The methods are evaluated on the basis of the accuracy, calibration, and cost of the required sen-
sors; the ease of implementation of the methods, including selection and estimation of the model
parameters and thresholds; the sensitivity and robustness of the methods in fault detection; and
their success in fault diagnosis. 

BUILDING, SYSTEMS, AND FAULTS
The fault-test program was conducted in a unique building that combined laboratory testing

capability with real building characteristics and was capable of simultaneously testing two full-
scale, commercial building systems side-by-side with identical thermal loads. The building was
equipped with three VAV AHUs. Two were nominally identical (AHU-A and AHU-B), each
serving four test rooms (Figure 1). The building had a true north-south solar alignment so that
the pairs of test rooms had nearly identical exposures to the external thermal loads. The test
rooms were unoccupied but were equipped with two-stage electric baseboard heaters to simulate
thermal loads and with two-stage room lighting, both scheduled to represent various usage pat-
terns. The third AHU (AHU-1) served the general areas of the facility including offices, recep-
tion space, a classroom, a computer center, a display room, service spaces, and a media center.
A second classroom (not shown in Figure 1) was added to the east side of the building during the
later stages of this project. AHU-1 was subject to variable occupant, lighting, external, and inter-
nal loads.

The test rooms, heating and cooling loops, and AHUs were well instrumented, including watt
transducers for all components of interest. The A and B test rooms were individually controlled
by a single commercial energy-management and control system (EMCS) and the general areas
were controlled by a second EMCS. The building had a structural steel frame with internally
insulated, pre-cast concrete panels, a flat roof, slab-on-grade flooring, and a floor area of 862 m2

(9272 ft2), including the new classroom. The east, south, and west test rooms each had 6.9 m2

(74 ft2) windows with double-layer, clear glass.
The heating plant consisted of a gas-fired boiler, circulation pumps, and the necessary control

valves. Heating operation of the HVAC systems was not required as part of the tests conducted in
this research, other than the preheating of the outside air during winter operation to simulate
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higher outside temperatures and force the HVAC systems into economizer mode. The cooling
plant (Figure 2), consisted of a nominal 35 kWthermal (10 ton) two-stage, reciprocating air-cooled
chiller; a 525 kWhthermal (149 ton ⋅h) thermal energy storage (TES) unit that was isolated from the
cooling system for this research; and chilled water supplied by a central facility, with pumps,
valves, and piping to circulate chilled water through the HVAC components.

The major components of the AHUs were the recirculated air, exhaust air, and outdoor air
dampers; cooling and heating coils with control valves; and the supply and return fans (Figure
3). Ducts transferred the air to and from the conditioned spaces. Both the supply and return fans
were controlled with variable-frequency drives. An additional heating coil was installed for this
research on AHU-A and B, between the outside air (OA) inlet and the flow and temperature sen-
sors. This coil was employed during the winter test period to preheat the outside air so as to
force the control system into the free-cooling mode. AHU-A and B were identical, while AHU-
1 was similar but larger to accommodate higher thermal loads. Air from the AHUs was supplied
to VAV box units, each having electric or hydronic reheat.

The supply fan speed for all three AHUs was controlled to regulate supply duct static pres-
sure. The AHU-A and AHU-B return fans were controlled to maintain a constant percentage of
supply airflow; in AHU-1, the return fan control signal was a constant percentage of the supply
fan control signal. The chilled water flow rate through the cooling coils in AHU-A and AHU-B
was controlled by three-port mixing valves in a diverting application. A two-port valve was used
in AHU-1.

The requirements for this project stipulated that a minimum of six faults be investigated, with
at least two degradation faults and at least one fault in each of the three AHU subsystems (air-

Figure 1. Plan of Test Building
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Figure 2. Chilled Water Flow Circuit in Test Building
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mixing, filter-coil, and fan). Table 1 shows the seven selected faults and their method of imple-
mentation for AHU-A and AHU-B. Although faults implemented through software or easily dis-
connected hardware (such as actuator linkages) were readily introduced, others required
substantial system modification, including the installation of bypass piping and additional valves. 

It was necessary, in the context of the research, to ensure that both FDD methods were (in
principle) capable of detecting all of the faults. Clearly, little would be learned from a series of
null results. This criterion eliminated some faults, such as temperature sensor faults that the
electrical power method would have difficulty detecting. This criterion was relaxed for tests
with AHU-1, discussed later. 

Table 2 indicates that each fault was implemented in at least two of the three test periods held
during summer, winter, and spring seasons. Each test period consisted of a week of controlled
tests, when the research staff of the test building introduced faults known to the investigators, a
short analysis period, and a week of blind tests. For each blind test period, the list of possible
faults was made known, but not the order of implementation or whether they were implemented
at all. The lists for each season excluded faults that would not be seen in that season. For exam-
ple, the recirculation damper would normally be fully open in hot weather (minimum outside
air) and a damper leak could not be detected. Abrupt faults were typically implemented over a
24 h period while most degradation faults required three days, one for each of three stages. The
three stages of the drifting pressure sensor fault were introduced over a single day.

Fault magnitudes were established during an initial period when the FDD methods were com-
missioned and the procedures for introducing faults and the HVAC systems were developed.
The magnitudes of the degradation faults were selected such that it was anticipated that the two
FDD methods would be able to detect the largest level, should be able to detect the middle level

Figure 3. Air-Handling Unit in Test Building
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and could possibly detect the lowest level. Fault magnitudes were consistent in each of the three
test periods. Constant-magnitude faults provided a firmer basis for evaluating the FDD methods
and were implemented with less difficulty than the variable-magnitude faults (a change of fault
magnitude over different occurrences at different times) that would likely occur in practice.
HVAC system commissioning consisted primarily of sensor calibration and establishing stan-
dard system operating configurations; the latter was required because the research facility
altered the systems between test periods to meet the needs of other research programs. The con-
figuration setup, which proved to be a major task for the test-building staff, encompassed fan
control algorithms, isolation of the thermal storage tank (which provided a thermal capacitance
that interfered with analysis of chiller cycling periods), and operating schedules for both HVAC
equipment and false loads in the test rooms.

A more realistic set of blind tests was conducted with AHU-1, the air handler serving areas of
the building occupied by research staff and classroom visitors. Four days of normal operation
for training FDD methods and 17 days for fault introduction were included in a summer period
of about six weeks. Building loads were not controlled and four of the six faults (listed in Table
3) had not been implemented in AHU-A and AHU-B and were completely unknown to the
investigators. This test period was considerably longer than each of the three test periods on the
matched AHUs, and increased the possibility of naturally occurring faults.

Two of the faults in this program produced signatures different from the naturally occurring
faults they were intended to represent: the leaky cooling coil valve and the coil capacity fault.
The leaking valve was implemented with a specially installed bypass valve that generated the
same thermal effect as a leakage past a closed control port, but changed the flow resistance. The
coil capacity fault mimicked the impact of water-side fouling on heat transfer across the cooling
coil to some extent. A simpler alternative to replacing the existing coil with an older coil with
tubes fouled with calcium carbonate was to close a valve in the inlet leg to the coil, thus increas-

Table 1. Method of Implementation of Faults
Fault Type Implementation
Air-Mixing Section

Stuck-closed recirculation 
damper

Abrupt Application of a control voltage from an independent 
source to maintain the damper in the closed position.

Leaking recirculation 
damper

Degradation Removal of the recirculation damper seals, with one seal 
removed for the first fault stage, two for the second, and 
all seals for the third stage. 

Filter-Coil Section
Leaking cooling coil valve Degradation Manual opening of a coil bypass valve.
Reduced coil capacity 
(water-side)

Degradation Manual throttling of the cooling coil balancing valve, to 
70%, 42%, and 27% of the maximum coil flow of 1.7 L/s 
(27.5 gpm) for the three fault stages. 

Fan 
Drifting pressure sensor Degradation Introduction of a controlled leak in the pneumatic signal 

tube from the supply duct static pressure sensor to the 
transducer, to a maximum reduction of 225 Pa (0.9 in. of 
water).

Unstable supply fan 
controller

Abrupt Introduction of alternative gains for the PID controller that 
adjusts fan speed to regulate static pressure.

Slipping supply fan belt Degradation Adjustment of fan belt tension to reduce maximum fan 
speed by 15% at 100% control signal for the first stage 
and 20% for the second stage. The third stage had an 
extremely loose belt with variable fan speed.
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ing the resistance to water flow. This change in flow resistance became the basis for its detection
with the electrical power FDD method. 

Daily data sets for normal and faulty operation were assembled by the test-building staff from
logs made by the EMCSs and were posted for electronic transfer to the investigators� home sites. 

DETECTION AND DIAGNOSIS
The two fault detection methods compare the differences between the observed system behav-

ior and a reference model of the system operation. The approaches differ significantly in how the
fault effects are observed. The first-principles-based method considers the performance of the
monitored system in terms of the system output useful to the air-conditioning process. In this case,
the model predicts the temperature of the air or the static air pressure at the outlet of the compo-
nent. A fault can be described in these terms as a degradation in the expected system performance.

Table 2. Faults Introduced into AHU-A and AHU-B During Three Blind Test Periods
Fault Summer Winter Spring
Air-Mixing Section

Stuck-closed recirculation damper X X
Leaking recirculation damper X X

Filter-Coil Section
Leaking cooling coil valve X X
Reduced coil capacity (water-side) X X

Fan 
Drifting pressure sensor X X X
Unstable supply fan controller X X X
Slipping supply fan belt X X

Table 3. Faults Introduced into AHU-1 During Blind Test Period and
Their Method of Implementation

Fault Type Implementation
Air-Mixing Section

Stuck-closed recirculation 
damper 

Abrupt Application of a control voltage from an independent 
source to maintain the damper in the closed position 
for about 24 h

Stuck-open outside air 
damper

Abrupt Application of a control voltage from an independent 
source to maintain the damper in the open position for 24 h

Filter-Coil Section
Leaking heating coil valve Abrupt Adjustment of output voltage to the heating coil valve, 

causing it to unseat and leak for about 29 h
Fouled cooling coil Degradation Blockage of the cooling coil with a curtain drawn from 

the bottom to cover 25%, 50%, and 75% of the 61 cm 
(24 in.) coil in the three fault stages

Fan 
Drifting pressure sensor Degradation Introduction of a controlled leak in the pneumatic signal 

tube from the supply duct static pressure sensor to the 
transducer, with pressure reduced by 50, 100, and 
150 Pa in the three fault stages (0.2, 0.4, and 0.6 in. of 
water) and each stage implemented for at least 6 h

Loss of control of supply 
fan

Abrupt Supply fan VFD isolated from EMCS and operated at a 
constant speed for about 23 h
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The electrical power correlation method uses models derived from the system characteristics that
relate electrical load to certain variables. This method predicts the expected power consumption.
In this case a fault can be described as a change in the expected system energy consumption. 

Both methods can take advantage of certain fault characteristics and not of others. The first-
principles-based approach will always detect a degradation in the performance of the thermo-
fluid system (as long as it is significant), regardless of the cause. The electrical power correlation
method will not detect a fault that affects performance but has no effect on the electrical load. It
is, however, predisposed to generating an operating cost associated with the faulty behavior and it
can, in principle, detect faults associated with motors and drive trains that the first-principles-
based approach cannot detect. 

Fault diagnosis is also based on the information available to each method. The sensors required
to implement FDD are one principal difference between the two methods. The first-principles-
based approach uses measurements typically installed for control (temperatures, humidities, flow
rates, etc.). One disadvantage with this approach is that in general terms there can be less control
over the quality of these measurements in any given installation. The electrical power correlation
method uses sensors over and above those normally installed, but these are more focused for the
intended application and are not as susceptible to poor installation and maintenance.

First-Principles-Based Models with Thermo-Fluid Measurements
First-principles-based (or analytical) models can be used as a reference for the �correct� or

expected operation of a HVAC system. The approach used in this research relied on the sensors
typically installed in most VAV systems for control. Three subsystem models [described more
fully in Norford et al. (2000)] were used to implement the FDD scheme: a fan/duct model of the
air system, an economizer model, and a model of the coiling-coil subsystem. Figure 4 demon-
strates the modeling arrangement. The black dots indicate where the comparisons to the obser-
vations from the real system were made, and hence where the fault detection for each subsystem
was focused. Simple, steady-state simulations of the subsystems are formed by the models,
which are based on the following principles:

� The fan/duct model is based on the fan laws and simple quadratic expressions for the change
in system resistance and predicts the supply air static pressure.

� The economizer model is based on the analytical representation of the mixed-air condition as
a function of damper position and the inlet temperatures and humidities. The model also
includes an actuator model.

� The cooling coil model is based on the SHR method effectiveness-NTU heat and mass trans-
fer calculation method [similar to the ASHRAE 3-line method; a review of both methods is
given by Stephan (1994)]. The subsystem model also includes fan temperature rise and mod-
els for the control valve and the actuator.

� The fan-temperature-rise model is a simple addition to the air temperature, linearly dependent
on the fan-control signal.

� The valve model is based on a first-principles analysis of the water-circuit resistance with
respect to the control valve. The model predicts the mass flow rate of water through the coil, a
typically unmeasured variable.

� The actuator model is an analytical representation of the movement of the actuator in
response to a control signal. This models the dead-bands at either end of the operating range
and any hysteresis (slack in the linkage) that may be present in the system.

The models have parameters for which values must be estimated for a specific system. The
parameters are designed, as far as possible, to represent some tangible system characteristic and
give greater precision in prediction. An example of this is the actuator �low activation point�
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parameter, which describes the value of the control signal required before the valve stem starts
to move as it is opened from the closed position (i.e., dead-band). Some of the model parameters
can be obtained from design information or inspection of the installed system. The face area and
number of rows and circuits in the cooling coil are examples. The remaining parameters are
identified simultaneously for each subsystem model. The model parameters are estimated by
applying a nonlinear optimization technique, minimizing the model prediction errors in a least-
squares sense. The data used for this procedure were generated by applying a sequence of open-
loop �steps� in the inputs to capture the system characteristics when the system was in a normal
(fault-free) condition. 

With the system models characterized, model predictions can be applied to the observations to gen-
erate the �prediction error� (demonstrated in the top halves of Figures 5 and 6). The models only apply
to observations that are close to steady state and a steady-state filter removes data containing tran-
sients. A lack of steady-state data was used to identify the presence of oscillatory, or unstable, control.

Figure 4. First-Principles-Based Model Functionality
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Some prediction error will always exist due to uncertainties in the measurements and unmod-
eled system disturbances. Statistically based thresholds are applied to the prediction error, such
that a certain magnitude of error is required before triggering an alarm. 

Once an alarm has been identified, the cause is diagnosed. Two methods were investigated in
this work, fault diagnosis by (1) expert rules and by (2) recursive parameter estimation. The
schemes are shown in Figures 5 and 6, respectively. Figure 5 shows that the �innovations� (the
magnitude of the prediction error over and above the thresholds) were split into three �bins.�

Figure 5. Method for Fault Detection and Fault Diagnosis Using Expert Rules
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The bins contain the average magnitudes of the innovations, exponentially weighted with age.
Each bin represents a portion of the operating space of the monitored process. Crisp expert rules
were then applied to the average values in these bins to determine the cause of the fault.

In the recursive parameter estimation scheme, some of the parameters are designed to repre-
sent the effects of the faults on the system output. These parameters are recursively re-estimated
to track the developing fault. The algorithm minimizes the prediction error and uses the sensitiv-

Figure 6. Method for Fault Diagnosis by Recursive Parameter Estimation
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ity coefficients of the fault parameters with respect to the model output to drive the estimation
procedure (Salsbury 1996). As the fault develops, the current fault parameter values implicitly
describe the state of the system and hence, diagnose the state of the system.

Gray-Box Correlations with Electrical Measurements
The electrical power correlation FDD method produced prediction errors in electrical power.

The method also made use of statistically derived confidence intervals for predictions of perfor-
mance under normal operation. The method is a semiempirical approach that correlates mea-
sured fan or pump power with such exogenous variables as airflow, motor speed control signals
and actuator position control signals. Power correlations were third-order polynomials; confi-
dence intervals reflected the influence of disturbances during training periods, such as those due
to normal variation in damper positions. Oscillatory power data, indicative of unstable local-
control loops, were detected via a calculation of signal variance over a sliding window of data
points; this calculation effectively acted as a steady-state filter by excluding oscillatory data
from comparison with power correlations established during the training phase.

Analysis of chiller power (associated with the economizer and cooling coil valve leakage
faults) was more difficult than for fans (air system faults) and pumps (cooling coil undercapacity
fault), for two reasons. First, the chiller in the test building was a two-stage reciprocating unit
with discrete power levels (0, 5, and 10 kW). In principle, it was possible to time-average the
power to obtain a continuous power variable suitable for the same sort of power correlations
used for fans and pumps. In practice, the cycling frequency was often long (i.e., on the order of
30 minutes), making it impossible to calculate a short-term power average needed for reasonable
correlation with driving variables. Second, chiller power was strongly influenced by environ-
mental conditions (expressed by dry-bulb and wet-bulb temperatures and solar radiation) and by
building internal loads. These variables are not all easily measured. Even those that are directly
and simply measurable require sensors that have a cost associated with them and are subject to
errors. It is necessary to either include these influences in a model of chiller power or exclude
them and limit the analysis of chiller power to narrow and known operating conditions. 

The FDD method developed and applied in the test building assessed chiller cycling periods
under two low-load conditions where it was, in principle, possible to discern a change in chiller
loading due to damper and valve leaks.

The method relied heavily on one-minute-average data from installed power transducers to
assess the benefits of such data and set the stage for a future cost-benefit analysis. A detailed dis-
cussion of the method is presented in a companion paper (Shaw et al. 2002), which includes
examples of power correlations, detection of chiller cycling, and analysis of power oscillations.

Table 4 summarizes the types of electrical power analyses used in this method, along with a
list of possible faults that each analysis can detect. The list of faults is not exhaustive but is long
enough to indicate the difficulties in distinguishing a particular fault from other possible causes
of the same deviation between predicted and measured electrical power.

Expert rules were used for limited fault diagnosis. Table 4 indicates how rules can distinguish a
slipping fan belt from a fault caused by a change in flow resistance: the former leads to power
measurements that differ from the predicted value for a given motor speed while the latter does
not. (For the slipping fan belt, the reduction in power due to reduced airflow was a stronger effect
than an increase in thermal dissipation from the fan belt itself, which became quite hot when slip-
ping.) Although careful analysis of fan curves indicates that this statement is not entirely true, the
impact of a change in duct pressure on the power-speed correlation is sufficiently minimal to be
of no concern. As a second example, the leaky recirculation damper or cooling coil valve will
affect chiller power but not fan power for a given airflow. 
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Ideally, a given power signature would be associated with nonoverlapping lists of faults, pro-
viding a high level of �orthogonality� useful for fault diagnosis. As can be seen in Table 4, this
ideal was not achieved. Errors in power transducers and changes in fan or motor performance
will affect both types of fan power correlations. In the blind tests, it was possible in some cases
to distinguish faults associated with a given power correlation by limiting the analysis to a small
range of the correlation or to a narrow band of another variable:

� The stuck-closed recirculation damper could be distinguished from the pressure sensor offset
in the test building via analysis of power at low airflows. The impact of the stuck-closed recir-
culation damper fault was exacerbated in the early evening, when the air handlers were still
running but, in cold or hot weather, the outdoor air damper was fully closed. The supply fan
then drew air across two closed dampers. There is substantial variation across buildings in
control strategies at the beginning and end of the working day and it is difficult to generalize
such an approach. Even in the test building, this strategy could not be generalized to AHU-1,
which operated continuously.

� The leaky cooling coil valve and the leaky recirculation damper could be distinguished with
the help of measurements of the valve position control signal and outdoor temperature (Shaw
et al. 2002).

This approach to fault diagnosis, while unable to distinguish a large set of possible faults, was
easily implemented in rules. For the blind tests, where the number of possible faults was limited,

Table 4. Nonexhaustive Listing of Faults Associated with a Given
Electrical Power Signature

Type of
Electrical Power Analysis

Possible Faults Causing a Deviation Between Predicted 
and Measured Electrical Power

Polynomial correlation of supply fan 
power with supply airflow

Change in airflow resistance, possibly due to stuck air-
handler dampers or fouling of heating or cooling coils

Static pressure sensor error (affects portion of fan power due 
to static pressure)

Flow sensor error
Power transducer error
Change in fan efficiency, caused by change in blade type or 

pitch, or use of VFD in lieu of inlet vanes
Change in motor efficiency

Polynomial correlation of supply fan 
power with supply fan speed control 
signal

Slipping fan belt
Disconnected control loop (fan speed differs from control 

signal)
Power transducer error
Change in fan efficiency
Change in motor efficiency

Polynomial correlation of chilled water 
pump power with cooling coil control 
valve position control signal

Change in water flow resistance, possibly due to constricted 
cooling coil tubes or piping

Disconnected control loop
Power transducer error
Change in pump efficiency
Change in motor efficiency

Detection of change in cycling frequency 
for two-stage reciprocating chiller

Leaky cooling coil valve
Leaky recirculation damper

Detection of power oscillations Unstable local-loop controller
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one rule was �if the electrical power exceeds the confidence interval and the airflow is less than
a threshold, then the fault is a stuck-closed recirculation damper.� More generally, the �if-then�
statement could be modified to include a larger list of possible causes of the detected fault.

RESULTS
The results from the FDD trials on AHU-A/B and AHU-1 are shown in Tables 5 through 8.

The original intent of the first-principles-based approach was to not use the mixed-air tempera-
ture sensor because this is not commonly available. The predictions of the mixed-air humidity
ratio and temperature by the economizer model were used as inputs to the cooling coil model.
The magnitudes of prediction errors associated with normal operation in the mixing box and
cooling coil (due to the influence of unmodeled disturbances) led to a reduction in sensitivity to
fault detection. There was also a significant reduction in the isolation of the cause of faults
(faults possibly being in one of two subsystems), which led to ambiguous diagnoses. The model
parameters were re-estimated using the mixed-air temperature measurement and the summer
tests were rerun with the addition of this measurement. The analyses for the other season were
carried out using the same models.

Table 5 describes the first blind test period, conducted in summer conditions on AHU-A and
AHU-B. Tables 6 and 7 describe the winter and spring blind test periods. The tests on AHU-1
are summarized in Table 8; for these tests the first-principles-based FDD approach gave a single
diagnosis through application of the RPE method and expert rules.

For both the first-principles-based models and the electrical power correlation method, the
results are discussed first for AHU-A and AHU-B and then AHU-1. Where individual faults are
highlighted, the order is the same as that presented in Tables 2 and 3. 

First-Principles Models with Thermo-Fluid Measurements
In general, the first-principles-model-based FDD method proved to be effective in the detec-

tion of the faults implemented on AHU-A and B. All faults were detected in each season they
were implemented, with the exception of the leaking recirculation damper and leaking cooling
coil valve. Diagnosis was less reliable, in that no single method of diagnosis (expert rules or
recursive parameter estimation) was able to provide a diagnosis for all fault conditions. 

A leaking recirculation damper can be expected to produce small differences between the
expected and observed mixed-air temperature. This is, however, a function of the temperature
difference between the ambient and return air streams (when these temperatures are equal, no
faults can be detected using temperature measurements) and the size of the leakage. In order to
detect these changes, the model of the economizer must be quite precise in its prediction of the
mixed-air temperature. The principal factors affecting the precision of the model were

� Stratification at the locations of the temperature sensors (return and mixed), which affects the
calibration of the model parameters and subsequent calculations of prediction error.

� Localized offsets caused by differences between the measured ambient-air temperature and
the temperature of the ambient air entering the inlet duct, some distance away. The effect was
similar to the above point.

� Unmodeled effects, of which there were two primary sources:
� The pressure/resistance characteristics for the fan/duct system were not constant as

a result of the fan control strategy (return fan runs at a fixed percentage of the sup-
ply air volumetric flow rate). This meant that at different fan speeds, different pro-
portions of the ambient air and return air were mixed for a given damper position.
Prediction errors are generated because the model assumes that these proportions
are unchanging (i.e., that the system is well balanced).



56 HVAC&R RESEARCH

� At certain conditions, the fan/duct system imbalance also caused ambient air to
flow in through the exhaust grille, resulting in a higher proportion of the ambient
air in the mixed air than expected by the model. This problem was exacerbated in
the system under investigation because of the increased resistance to airflow
through the ambient air inlet duct due to the installation of the preheat coil.

These problems can be considered to be system faults and not problems with the FDD
method. The last point highlights the disadvantages of an analytical modeling approach applied
to observations of the result of the process, rather than modeling the process itself. Given a more
detailed fan/duct system model, it may be possible to predict the airflow rates within the system
(within a tolerable degree of uncertainty), which would eliminate the need for the mixing box
model as presented in this work.  

Table 5. Detection and Diagnosis of Faults During Summer Blind Test Period for 
AHU-A and AHU-B

Test
Day

AHU

Physical Models

Electrical Power
Models

Detect
from 

Innovations 

Diagnose 
from

Expert
Rules

Diagnose 
from 

Recursive 
Parameter 
EstimationA B Detect Diagnose

1 Slipping fan belt 
(Stage 1)

No � � Yes Yes
Reduced cooling 
coil capacity
(Stage 1)

Yes Yes No Yes Yes

2 Slipping fan belt 
(Stage 2)

No � � Yes Yes
Reduced cooling 
coil capacity
(Stage 2)

Yes Yes No Yes Yes

3 Slipping fan belt 
(Stage 3)

Yes No Yes Yes Yes
Reduced cooling 
coil capacity
(Stage 3)

Yes Yes No Yes Yes

4 No fault No fault � � No fault �
Unstable 
pressure control

Yes* � � Yes Yes

5 Unstable 
pressure control

Yes* � � Yes Yes
No fault No fault � � No fault �

6 Static-pressure 
sensor offset 
(Stages 1-3)

Yes No Yes Yes Yes
Stuck-closed 
recirculation 
damper

Yes No Yes Yes Yes

7 Stuck-closed 
recirculation 
damper

 Yes Yes Yes Yes Yes
Slipping fan belt 
(Stage 1)

No � � No �

*The unstable pressure controller was detected via the steady-state filter, which indicated that the measured pressure was in a dynamic
state for a prolonged period. No detection or diagnosis method was applied, because the measurements did not pass the filter.



VOLUME 8, NUMBER 1, JANUARY 2002 57

Estimating the parameters for the economizer model means that either the system has to be bal-
anced correctly or the training data (ideally) need to encompass the complete range of expected
airflow/resistance characteristics. If the model does not describe its output in these terms, then
robustness comes through increased uncertainty in the model output (wider confidence limits or
thresholds) and reduced sensitivity in fault detection. Practically, the model training data have to
be collected at one or two airflow rates. An improvement would be to retune the thresholds as
new regions of operation are encountered, to maintain maximum sensitivity.

Table 6. Detection and Diagnosis of Faults During Winter Blind Test Period for
AHU-A and AHU-B

Test
Day

AHU

Physical Models

Electrical Power
Models

Detect
from 

Innovations 

Diagnose 
from

Expert
Rules

Diagnose 
from 

Recursive 
Parameter 
EstimationA B Detect Diagnose

1 No fault No fault � � No fault �
Stuck-closed 
recirculation 
damper

Yes1 No Yes2 Yes Yes

2 Leaking cooling 
coil valve
(Stages 1-3)

No � � Yes Yes
Slipping fan belt 
(Stage 1)

No � � No �

3 Leaking 
recirculation 
damper
(Stage 1)

No � � Yes Yes
Slipping fan belt 
(Stage 2)

No � � No �

4 Leaking 
recirculation 
damper
(Stage 2)

No � � Yes Yes
Slipping fan belt 
(Stage 3)

Yes Yes3 Yes Yes Yes

5 Leaking 
recirculation 
damper (Stage 3)

No � � Yes Yes
Static pressure 
sensor offset 
(Stages 1- 3)

Yes Yes Yes Yes Yes

6 Static pressure 
sensor offset 
(Stages 1- 3)

Yes Yes4 Yes5 Yes Yes
Unstable 
pressure control

Yes Yes Yes Yes Yes

7 Unstable 
pressure control

Yes6 � � Yes Yes
No fault No fault � � No fault �

1Alternative diagnosis of static pressure sensor drift.
2Alternative diagnosis of slipping fan belt.
3Alternative diagnosis of unknown mixing box fault.
4Alternative diagnoses of excessive control dynamics and excessive outside air (due to flow of outdoor air into the
exhaust damper, an actual�not artificial�system fault).
5Alternative diagnosis of slipping fan belt.
6The unstable pressure controller was detected via the steady-state filter, which indicated that the measured pressure was
in a dynamic state for a prolonged period. 
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The lower levels of leakage in the cooling coil valve were difficult to detect. A significant fac-
tor that resulted in this insensitivity was the modeling of the valve. The nonlinear characteristics
associated with the heat exchanger process combined with the poorly balanced chilled water cir-
cuit resulted in very high gain as the valve opens. This is difficult to model and results in a high
degree of uncertainty in the low region of operation. It was found that leakage could only be
detected when the valve was closed.

The leakage fault was not detected during the winter test period, which should have been the
period when the fault was most visible. The steady-state detector deemed that an extremely high
proportion of the data were transient and hence there were almost no data with which to monitor
the system. This excessive dynamic activity in the coil control system was due to the cycling of
the chilled water inlet temperature, due to the close coupling of the chiller to the coil and to the
two-stage control of the reciprocating chiller. Although this could be considered to be a design
fault, these effects were considered to represent �acceptable operation.� The steady-state thresh-
old was reset during the spring test period to allow more data through the steady-state detector
and hence permit the fault monitoring function. The relaxed steady-state criterion, however,
resulted in larger model prediction errors. The fault threshold were increased accordingly, again
reducing the sensitivity of the method to detection.

The reduced coil capacity fault implemented on AHU-A and AHU-B was easily detected with
the exception of spring operation, when only the highest level of the fault was detected. This
was attributed to the relatively low load on the coil, which limited the effect of the fault on the
coil performance.

The fan-duct reference model for the static pressure prediction was sufficiently accurate to
allow the detection of the offset in static pressure, at least for the second and third magnitudes of
the fault. The first two stages of the slipping fan belt were not detectable, although the observa-
tions from the data showed the effects on the performance to be very small. Oscillatory supply
duct pressure control was detected by a prolonged period of dynamic activity (as indicated by a
lack of steady-state data classified by the steady-state detector). This approach proved to be reli-
able: the fault was detected each time it was implemented. 

The stuck-open outside air damper fault implemented on AHU-1 was not detected. The return
fan overloaded the supply fan to such an extent that the relative proportion of the recirculation
airflow increased from normal operation. The effect of the stuck-open outside damper was
masked to the extent that the system appeared to have a fault similar to a stuck-closed outside air
or exhaust air damper. The first-principles-based method indicated that a fault condition was
present in the economizer on the day that the stuck-open damper fault was implemented,
although no firm diagnosis could be made.

Neither the leaking heating coil valve nor the fouled cooling coil surface faults were detected
in AHU-1. Both faults should have been detected by observation of the prediction error at the
supply air temperature point, although it would have been unlikely that the faults could have
been distinguished because they both result in a reduction in cooling coil capacity. Failure to
detect both faults was due to the high degree of uncertainty in the model predictions. Factors
contributing to this uncertainty that the point temperature sensors on the air-side are more sus-
ceptible to airflow-related temperature offsets such as stratification, and that the estimation of
the mixed-air humidity ratio (inlet humidity to the cooling coil) was poor, partly because of the
airflow imbalance problems discussed for AHU-A and B, and partly due to the estimation of the
parameters of the economizer model from data taken from point temperature measurements. The
cooling coil model was dehumidifying during the summer test period and model predictions
were sensitive to uncertainty in the estimate of inlet humidity. These problems led to several
false alarms during the AHU-1 test period. After completion of the test period, it was clear that
these false alarms could have been avoided by a marginal increase in the level of the thresholds. 
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Conclusive diagnosis with both the expert-rules and the recursive parameter estimation was
limited by the need for data to be available across the range of operation (low, high and mid
ranges). For example, a leaking cooling coil valve could only be distinguished from a sensor off-
set if the fault was apparent only when the control valve was closed or nearly closed. However,
during most of the tests implemented in this study, the systems remained in a narrow region of
operation. 

The problems associated with unmodeled disturbances, the lack of independence in the
parameters and tests carried out over nominally one operating condition (season) led to difficul-
ties in generating reliable performance from this method.

Gray-Box Correlations with Electrical Measurements
Results with submetered power data were very satisfactory for the three blind test periods for

AHU-A and AHU-B. Almost all faults were detected. Careful maintenance and control of the
HVAC systems and a limited pallet of faults to choose from made fault diagnosis possible,
whereas it would be substantially more difficult or impossible in a less-controlled setting.

The stuck-closed recirculation damper was detected and diagnosed in the two test periods in
which it was implemented. The leaky recirculation damper was the most difficult to detect.
Analysis of chiller cycling frequency was limited to a narrow range of outdoor temperatures, to
block the influence of outside temperature on chiller loading. Suitable conditions were present
in the late-winter test and the fault was successfully detected and diagnosed. Temperatures were
milder in the spring test and the fault was not found. A less restrictive temperature band, not
evaluated, might have made it possible to find the fault in spring at the expense of possible false
alarms.

The leaky cooling coil valve was detected and diagnosed in the two test periods in which it
was implemented. The coil capacity fault was detected and diagnosed successfully in the sum-
mer test period and was also found on two of the three implementation days in the spring test
period. It was not detected during the second of the three degradation stages in spring because
the cooling loads were relatively low and the cooling coil valve did not open to an extent suffi-
cient to reveal the fault. 

The pressure sensor offset fault was detected and diagnosed successfully in all three test peri-
ods and the unstable fan controller was detected and diagnosed in the two periods in which it
was implemented. All three degradation stages of the slipping fan belt were detected and diag-
nosed in the summer test period but only the most severe stage was found in the winter tests. At
that time, the detection algorithm required that the fan-speed control signal be 100%, an unduly
severe restriction that was met only on the last day, when there were large loads on the fan. The
detection algorithm was changed for AHU-1, to rely on confidence intervals above and below
the normal-operation correlation of fan power with speed, with no restriction on the speed signal
as a prerequisite for detection of a fault.

As noted earlier, four of the six AHU-1 faults were entirely unknown to the investigators and
had not been studied on AHU-A and AHU-B. The electrical power method successfully
detected three of the six faults (stuck-closed recirculation damper, pressure sensor error, and loss
of control of the supply fan), successfully diagnosed only one (pressure sensor error), and did
not find the three remaining faults. Balancing this mixed performance, it is worth noting that one
of the detected faults, the loss of control of the supply fan, was not among those for which the
method had been commissioned. Further, the method did not generate any false alarms. 

After the AHU-1 faults were revealed to the investigators, the electrical power FDD method
was extended and applied with more care to data recorded during days when the undetected
faults were implemented. The three faults still defied detection. Neither the stuck-open outside
air damper nor the fouling on the cooling coil affected the supply fan power for a given airflow.
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The impact of fouling on cooling coil capacity was not investigated because chiller cycling at
high loads is strongly affected by unmeasured variables (internal and solar loads, for example).
The leaking heating coil valve could not be detected via a change in power consumption of the
source of hot water because the boiler was not monitored. An analogous method was successful
in finding the leaking cooling coil valve, as already noted. While the leaking heating coil valve
did introduce a heating load on the (downstream) cooling coil that affected the chiller cycling
period, the change was not sufficiently conclusive to warrant flagging it as a fault.

DISCUSSION
All sensors required to implement the first-principles-based methods (Table 9) are typically

installed in VAV systems for controlling the HVAC processes; the sole exception is the supply
airflow sensor, which is not used when the return fan is controlled on the basis of supply fan
speed. For effective fault isolation it is desirable to generate prediction errors at the outlet of
each modeled subsystem. The attendant sensor is required to make this possible. Improvements
to the performance of the cooling coil FDD scheme could have been realized if the coil outlet air
temperature measurement was used, rather than the supply air temperature (the fan temperature
rise model would not have been necessary). 

Results from the test periods demonstrated that the accuracy of the cooling coil model predic-
tions under dehumidifying conditions might have been improved if a better estimate of the inlet
humidity ratio were available. A possible solution is the installation of an additional sensor if the
cooling coil is designed for latent duty, although the air local to the sensor location needs to be
well mixed. An alternative would be to measure the ambient airflow rate as well as the supply
airflow rate. The proportions of ambient and return air in the supply air could then be calculated
directly. 

Ideally, the outside-air temperature and humidity sensor would be located in the inlet duct to
the system rather than being external to the building to reduce the effects of improper represen-
tation of the air properties. This would inevitably increase the cost of the implementation of the
FDD scheme.

The electrical power FDD method required substantially fewer measurements, which reduced
the sensor maintenance requirements. Sensors for this method are listed in Table 9. The electri-
cal power data that are at the heart of the method are not available in typical HVAC plants. The
method as implemented in the test building required a power meter for the supply fan for each
AHU. Another power meter was required for the single onsite chiller. The apparent economy in
having just one chiller and one chiller power meter was more than outweighed by difficulties in
ascribing changes in chiller cycling to faults in a particular air handler. To provide an informa-
tive test of the electrical power FDD method, it was necessary to couple the chiller to a single air
handler and use district chilled water for the others, even when cooling loads were low and the
single chiller would have had adequate capacity. In a high-rise office building where a single
chiller serves separate air handlers on each floor, the electrical power method would not be able
to detect faults on the basis of chiller power.

The sensors available for use on this project were generally instrument-grade devices having
a higher accuracy, more stability and less drift than standard HVAC-grade devices. Exceptions
include the return air humidity sensor and the supply duct static pressure transducers, which
were standard HVAC-grade devices. Equipment costs for instrument-grade sensors are typically
3 to 5 times the cost of standard, mass-produced HVAC-grade sensors. Costs noted below
exclude installation, setup, and any onsite calibration, which is estimated to average $75 per
sensor.

Sensors that require periodic calibration, such as those measuring temperature, pressure, and
flow, were within their appropriate calibration dates to comply with certification requirements.
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Calibration represents the most significant maintenance requirement for the sensors. Typically,
the listed sensors are calibrated annually, and more frequently than sensors in a standard HVAC
system:

� The return, supply, and outside airflow rates and temperatures were measured by electronic
airflow measuring stations. Each measuring station costs $1400 and has a stated accuracy of
±2% for airflow greater than 2.54 m/s (500 fpm) and ±0.2°C (0.36°F) for temperature, with
zero long-term drift.

� Mixed-air temperatures were sensed using instrument-grade 1000-ohm platinum RTDs
arranged in a multipoint array. The array has a listed device accuracy of ±0.14°C (0.25°F) and
an average cost of $2500. Return air humidity is measured with a standard HVAC-grade
humidity sensor with an accuracy of ±3% and an equipment cost of $50.

� Supply duct static pressure transducers were standard HVAC-grade devices with a stated
accuracy of ±1% of full scale [±0.75 Pa (0.03 in. of water)]. Stability was listed as ±1.0% of
full-scale deviation from original calibration for one year under normal operating conditions.
These transducers cost $225 each, compared with $485 for sensors with an accuracy of
±0.25% of full scale, which were installed after this project was completed.

� Water temperatures were sensed with single point, direct immersion, instrumentation-grade,
1000-ohm 2-wire and 100-ohm 4-wire, platinum RTD sensors. The sensors have a stated
accuracy of ±0.14°C (0.25°F) and are very stable, with little long-term drift. These tempera-
ture sensors and related equipment have an average cost of $125 each.

� Electrical power to the supply fans, pumps and chiller was measured with precision AC watt
transducers with a stated accuracy of ±0.2%. These devices have NIST-traceable calibration.
The watt transducers cost $400 each, including $60 for calibration; the transducer for the
chiller required additional current transducers and cost $550. HVAC-grade watt transducers,

Table 9. Sensors and Control Signals Required for Implementation of Each FDD Method 
Sensor Type or
Control Signal Condition

First-Principles-
Model FDD

Electrical Power
FDD

Temperature Return air X
Outside (ambient) air X X
Mixed air X
Supply air X
Chilled water flow to coil X

Humidity Return air X
Outside (ambient) air X

Flow Supply air X X
Pressure Supply duct static pressure X X (training only)
Electrical power Chiller X

Supply fan X
Secondary chilled water pump X

Control Signal Return fan X
Economizer X
Cooling coil control valve X X
Supply fan X X

Note: All sensors and control signals are required for fault detection; there would no reduction in sensor count if moni-
toring were limited to detection and excluded diagnosis. 
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not used at this site, are available for about $250. 
� Outside air conditions were measured by an instrument-grade temperature and humidity mea-

suring weather station. A 100-ohm platinum RTD with a stated accuracy of ±0.2°C (0.36°F)
was used for temperature and a polymer sensor with a stated accuracy of ±1% (at 0 to 90%rh)
was used for humidity measurement. The measuring station has a total cost of approximately
$1000.

The overall accuracy of the instrumentation system depends on factors in addition to the
stated accuracy of the sensing device: transducers, stability of power supplies, wiring type, lead
length, A/D converters, processor resolution, scaling values and, in particular, measurement rep-
resentation of average fluid properties and quantities. The impact of these uncertainties on the
performance of FDD methods was not evaluated as part of this work. A full assessment of the
uncertainties associated with the first-principles-based FDD methods in HVAC systems is pre-
sented in Buswell (2001).

The parameters of the first-principles models need to be calibrated for each test system. Some
parameters are identified directly from design information and/or inspection. The remaining
parameters are simultaneously identified using test data from the target system. These data were
obtained by increasing the control signal to each sub-subsystem in a series of steps from 0% to
100% and back to 0%. Each step is held until steady state is considered to exist. For the tests
conducted in this research, the total time taken to commission three subsystems in one AHU
(economizer, cooling coil, and fan-duct system) was 23 h. This was controlled largely by the
time constants associated with the system and the need for the observation of a number of con-
secutive points at each step to decide whether steady-state conditions exist. To decrease this
overhead, simultaneous commissioning of all three subsystems was investigated on AHU-1
(Norford et al. 2000). The simultaneous test took 14 h to complete, saving 9 h. Alternative
schemes to generate training data may provide a quicker method of capturing the system charac-
teristics. 

The model parameters are described fully in Norford et al. (2000) and are listed in Table 10.
The commissioning tests were designed to provide data to capture the principal system charac-
teristics. It was not always possible to identify all parameters simultaneously such that each
parameter represented its prescribed system characteristic. This was caused by a lack of parame-
ter independence, which increased as the number of parameters increased (i.e., one parameter
estimate may in part be offset by the value in another and hence the subsequent parameter esti-
mates become gray). 

This phenomenon, particularly apparent in the economizer model, led to an approach in
which subsets of the parameters were estimated from the commissioning data that most
related to their effect on the model. Leakage parameters were identified from data for which
the control elements were closed (0% or 100% control signal). With the leakage parameters
fixed, the model �gain� parameters were then identified from the data for the opening move-
ment of the control signal (0% control signal to 100% control signal). Finally, with the leak-
age and gain parameters fixed, the control actuator hysteresis parameters were identified from
all of the commissioning data (0% control signal to 100% control signal and then reverse from
100% to 0%). 

The steady-state detector also required two parameters for each monitored subsystem. One
describes the dominant subsystem time constant in relation to system dynamics and the other
controls the amount of data that is considered to be transient. As the stringency of the parameter
is increased, the amount of data passed on to the FDD methods is reduced. Trials on a number of
HVAC systems, including those systems tested here, have revealed that the values of these
remain quite consistent for similar subsystems. 
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In concept, the methods do not require the selection of fault thresholds. A fault is simply
detected when a prediction error is considered to be significant against some statistical measure.
Similarly, a statistically significant change in the value of a recursively re-estimated fault
parameter could also be used to indicate the presence of a fault. In practice, the scheme did not
formally account for the uncertainty with respect to the sensitivity of the model output to
unmodeled phenomena. The addition of the thresholds, above which a prediction error generated
an alarm, was a subjective and somewhat ad hoc attempt to account for this uncertainty. Better
model representation of the process and a formal methodology to account for the uncertainties

Table 10. Parameters of First-Principles Models
Subsystem Design Parameters Calibrated Parameters
Fan-duct Rotational speed of the fan (estimated 

from the control signal) (�)
Static pressure sensor offset (Pa)

Static pressure at zero mass flow rate 
(Pa)

Total fan/duct resistance to airflow 
(sPa/kg)

Fan minimum rotational speed (�)
Fan maximum rotational speed (�)
Control signal relating to minimum 
rotational speed (�)
Speed at which fan belt slippage
occurs (�) 

Air temperature rise 
due to fan

Control signal relating to the minimum 
fan speed (�)

Minimum temperature rise (K)

Maximum temperature rise (K)
Economizer (dampers) Mixed air temperature offset (K)
 Parameter that describes the degree of 

curvature in the process relationship (�)
Parameter that defines the asymmetry of 
the process (�)

 Leakage through the return damper (�)
 Leakage through the outside air damper 

(�)
 (actuator) High activation point (�)

Low activation point (�)
Hysteresis (�)

Cooling Coil (coil) Coil face area (m2) Heat-transfer scaling factor (�)
Number of rows (�) Supply air temperature sensor offset (K)
Number of circuits for parallel flow (�) Fractional flow leakage (�)

 (three port control 
valve)

Maximum chilled water mass flow rate 
(kg/s)

Curvature coefficient (�)

Authority (�)
 (actuator) High activation point (�)
 Low activation point (�)

Hysteresis (�)
Note: The parameters in italics are those used for fault diagnosis.
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from all sources has been shown to produce a more sensitive and a more robust first-principles-
based fault detection scheme than that used in this research (Buswell 2001).

The expert-rule method that employs the bins requires a number of parameters to locate the
bins within the operating space for each subsystem (i.e., what value of control signal is attrib-
uted to low, mid and high operation). The expert rules are generic and principally describe what
evidence is expected to exist with respect to the fault and the bin categories.

The sensitivity of the electrical power FDD method to faults and robustness with respect to
false alarms are functions of the extent to which the semiempirical power correlations capture
the process characteristics and the calculation of a large number of thresholds and other
parameters, listed in Table 11. These thresholds and parameters can be usefully grouped as
follows: (1) normal equipment power levels, from measurement or manufacturer�s data;
(2) statistical confidence intervals; (3) fault detection thresholds based on commissioning the
FDD method with known faults; or (4) data analysis regions, based on commissioning the
FDD method with known faults and designed to improve the robustness of the method in both
detection and diagnosis.

The list of parameters does not include the parameters in the third-order polynomial curve fits
that express the correlation of electrical power with flow or rotational speed. Values for these
parameters were determined from training data for individual fans and pumps.

Required values for the first two groups are easily obtained or assigned. One goal of ongoing
research is to reduce the number of parameters and thresholds in the last two groups, to simplify
and eventually automate the process of commissioning this FDD method. To that end, the AHU-
1 test period in this research provided an opportunity to replace the effective but hand-tuned
analyses of fan power as a function of speed and pump power as a function of valve position
with more straightforward polynomial power correlations, for which the statistics are rigorous
and the only need is to supply a confidence interval. 

Calibration of the power correlations for normal operation was entirely a passive procedure
and demanded only a reasonable range of operating conditions. For the test building, about 10 h
of data from power meters and supporting sensors were required. At the test building, these data
were collected in a single summer season. These data were sufficient for fault detection but not
diagnosis, where knowledge of fault signatures was required to distinguish faults that reveal
themselves as a deviation in a power correlation for a single component (i.e., the supply fan).
Fault diagnosis rules developed for equipment in the test building relied on observations of
faulty performance. Further tests in different buildings are necessary to determine the extent to
which these rules are general or can be easily adjusted. It is clearly not practical to commission
an FDD method with onsite faults.

The first-principles-based methods are formulated to represent what is normally considered as
�ideal� system operation. In this respect, they are sensitive to any nonideal system behavior,
which could represent a design fault. Two forms of nonideal behavior affected the sensitivity
and robustness of the first-principles methods during these tests. Both forms concerned changes
in the relative proportion of outside and recirculation airflow rates through the mixing box, as
the supply fan speed varied. One form of this phenomenon is reported in Seem et al. (1998). The
nonideal behavior could cause innovations in both the mixed-air temperature and supply air tem-
perature, suggesting faults in the economizer and cooling coil respectively. 

In addition to the effect of the nonideal system behavior, the first-principles-based methods
were sensitive to the changeover in system configuration necessary at the start of each test
period (the test systems were used for other project work in between the seasonal tests con-
ducted in this study). The changeover in configuration concerned control strategies and reinstal-
lation of some sensors. Further, some physical disruption to the systems, such as repairs to



VOLUME 8, NUMBER 1, JANUARY 2002 67

damper linkages, was necessary between test periods. This could have caused a change in the
system characteristics and reduced the validity of the model calibration. 

The nonideal system characteristics and the necessary disruption to the state of the system
that occurred between test periods resulted in the setting of fault thresholds for each test
period. This was done in a subjective manner to eliminate false alarms during periods of

Table 11. Thresholds and Other Parameters Required by 
Electrical Power FDD Method

Description of Thresholds and Parameters Value
Fan-power correlations with airflow and speed control signal
Maximum deviation of static pressure from set point for training data 25 Pa (0.1 in. of water)
Confidence level to establish boundary between normal and faulty data 90%
Airflow boundary to distinguish stuck-closed recirculation damper from static 

pressure offset/drift1
500 cfm

Fan power at 100% speed below which a slipping-fan-belt fault was flagged, 
subject to a minimum time duration2

1 kW

Time duration for low fan power at 100% speed, above which a slipping-fan-belt 
fault was flagged

3 one-min.
power samples

Pump-power correlation with cooling coil valve position control signal
Valve position control signal above which pump-power data were analyzed for a 

cooling coil capacity fault3
40%

Measured normal-operation power level of the secondary chilled water pump 400 W
Minimum decrease of pump power below normal-operation value, in excess of 

which a coil capacity fault was flagged4
10 W

Confidence level to establish boundary between normal and faulty data (used for 
AHU-1)

90%

Chiller-cycling analysis
Power level above which the chiller is considered to be operating in the low-

power stage5
4 kW

Cycling interval when the cooling coil valve control signal is at 0%, below 
which a leaky-valve fault is flagged4

30 min.

Normalized outdoor air temperature, below which chiller cycling is analyzed to 
detect a leaky recirculation damper6

0.2

Power-oscillation analysis
Size of sliding window for averaging one-minute power data from submeters 5 samples
Standard deviation of power signal above which a fault is flagged, as a 

percentage of average power
15%

1This parameter was used solely for fault diagnosis.
2Fan-power analysis at 100% speed was used in AHU-A and B to detect the slipping fan belt. For AHU-1 this approach
was replaced by the more rigorous and sensitive polynomial correlation of fan power with speed control signal.
3Pump-power analysis relative to a measured and near-constant normal-operation value was used in AHU-A and B to
detect the coil capacity fault. For AHU-1 this approach was replaced with a polynomial correlation of pump power with
valve position control signal.
4The parameters for the decrease in pump power and the change in chiller cycling interval were used for a single-stage
detection and diagnosis in the test building, where the number of faults was limited.
5The chiller�s high-power stage was not of concern, because the chiller-cycling analysis was limited to low-load condi-
tions when the chiller was either off or in the low-power state.
6The normalized outdoor air temperature, defined in Shaw et al. (2002), is the difference between the outdoor air temper-

ature and the supply air temperature set point, normalized by the difference between the supply and room air temperature
set points.
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known normal operation (Norford et al. 2000). This approach was not completely effective for
the AHU-1 tests, during which the fault thresholds were adjusted for two consecutive days of
operation. Following the setting of the thresholds, the nonideal system behavior became more
predominant, which led to several false alarms for the test period. Although it was recognized
that the alarms were false and that they could be eliminated with very minor changes to the
thresholds (~0.25°C), the thresholds were not readjusted during the fault testing, because this
would not have been consistent with the FDD methodology as proposed for this project. In
practice, the thresholds could easily be made more robust by setting them over a longer period
of operation.

In some instances, the nonideal system behavior resulted in the setting of relatively wide fault
thresholds, which necessarily reduced the sensitivity of the methods, particularly for the more
subtle leakage faults. Considering that the systems were subject to change between test periods
and that they exhibited nonideal behavior, the results of this study make it clear, however, that
the first-principles methods remained robust in fault detection. The models were not recalibrated
to account for disruption to the systems that occurred between test periods.

The diagnosis of faults by the first-principles methods was less robust than the fault detection.
A number of faults detected during the blind test periods were misdiagnosed. Robust diagnosis
by expert rules requires the system to have operated over its complete range during the occur-
rence of a fault. Considering that some faults can force the system to move to, and remain at, one
operating point, this requirement is impractical. However, this restriction could be eliminated by
developing a methodology that includes the injection of test signals to exercise the system
across its range of operation once a fault has been detected.

Fault diagnosis by the recursive re-estimation of the first-principles-based model parameters
was sensitive to the unmodeled disturbances, the limited excitation in terms of operating condi-
tion, and the lack of independence of the parameters. It is unlikely that it would be possible to
include parameters to specifically represent all fault conditions. Evidence from this work sug-
gests that typical HVAC system data could probably support two recursively re-estimated
parameters; one describing the under/over capacity at the �high duty end� of operation and one
describing under/over capacity at the �low duty end� of operation. 

The electrical power FDD method was effective in detecting faults for AHU-A and AHU-B.
The detection methodology was straightforward for some faults, including those that affected
fan power for a given airflow (the stuck-closed recirculation damper and the pressure sensor off-
set), those that impacted the cycling of the reciprocating chiller, and the oscillating controller.
The detection methodologies for other faults were developed in response to the configuration
and operation of the equipment in the test building. Notably, the cooling coil capacity fault was
detected by identifying changes in the electrical power drawn by the secondary chilled water
pump. This method was effective only because the fault was introduced in a way that signifi-
cantly obstructed the water flow. Water-side tube fouling would likely not have been detected.
Detection of the slipping fan belt was effective but done with a threshold developed from obser-
vations of the impact of the fault, rather than by relying strictly on a fan power correlation.
Detection of this fault for AHU-A and AHU-B was also limited to 100% speed control signal, an
apparently unnecessary restriction on the use of the power-speed correlation that was eliminated
for AHU-1. This same restriction was employed in the first-principles model to distinguish this
fault from the pressure sensor offset.

Several of the faults introduced into AHU-1 did not produce detectable changes in electrical
power, including the stuck-open outside air damper, the obstruction of the cooling coil, and the
leaky heating coil valve. Detection failure in these cases is acceptable, because the FDD method
developed for other faults was rationally applied and simply did not reveal significant deviations
from normal operation. It is possible that further tuning of the method could have reliably
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revealed the leaky heating coil valve, in the test building and others where the heating coil is
upstream of the cooling coil. This will be pursued in the future.

As with the first-principles method, fault diagnosis via the electrical power FDD method was
less reliable than fault detection. Diagnosis techniques also required considerably more effort to
develop and commission. For example, it was relatively easy to measure the cycling periods of
the reciprocating chiller, but considerable care was required to establish operating regions where
the leaky recirculation damper could be diagnosed. Inadequate care in this step not only con-
founds the diagnosis process but leads to false alarms, as would occur if a change in chiller
cycling were flagged but that change were due solely to variations in the thermal load on the
chiller. Diagnosis of the stuck-closed recirculation damper and the pressure sensor offset
required careful observation of the HVAC plant and a knowledge of the normal control of the
mixing box dampers at different times of day and different seasons.

The electrical power method proved to be robust in terms of false alarm generation. None
were generated in the AHU-1 test period. In part, this is due to the choice of confidence intervals
for the power correlation; intervals of lower confidence would be tighter and would tend to
reveal more faults and generate false alarms.

CONCLUSIONS
The relatively rare opportunity to thoroughly test FDD methods in a building operated as a

research facility is an invaluable bridge between simulation and lab testing and field deploy-
ment. Such �real-world� issues as sensor placement and calibration, fault magnitudes, and
imperfectly understood equipment performance under normal and faulty operation make it
unlikely that a first-generation FDD method will successfully leap from lab to commercial use.
Controlled field tests such as were required for this project are not so much a proof of perfor-
mance of fully mature methods but a means of revealing flaws in the methods and subsequently
refining them to the point where their performance is substantially improved.

The first-principles-model-based methods can be implemented without installation of special
sensors. However, further work is required to shorten the time required to gather the training
data for model calibration. The electrical power correlation method requires the use of addi-
tional electrical power sensors, but models are calibrated primarily from data collected during
normal system operation. The advantage of a single testing procedure and models that can
extrapolate is that the FDD scheme is operational immediately after installation (and calibration)
of the FDD software. Normal operation data could be used to calibrate the first-principles-based
models in a similar manner to the electrical power correlation approach. The disadvantage, how-
ever, is that data from across the subsystem operating season are required before the models are
fully calibrated.

As shown in Tables 5 through 8, both FDD methods performed reasonably well in detecting
faults. The electrical power FDD method was less developed and may not apply to other sites.
Power correlations can be used as an effective method for detecting faults, but it is not clear how
much work will be required to adapt the basic approach to different plants. The first-principles-
based scheme is more mature than the electrical power correlation scheme as an FDD approach.
The methods have been applied to other systems installed in real buildings. The reduction of
false alarms and increase in sensitivity in the detection of faults has been addressed in subse-
quent work by Buswell (2001). In the future, developers of the electrical power method will
consider extending that method to use additional sensors, such as temperature sensors typically
found in control systems. Table 12 summarizes the evaluation of the two methods.

Both FDD approaches require some additional information to diagnose faults. This effort was
simplified at the test site because of the limited number of introduced faults. Implementation of
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either method on a system with no prior knowledge of the causal faults will almost certainly
result in ambiguous diagnosis. 

The first-principles-based methods are sensitive to the occurrence of nonideal system behav-
ior. The detection of nonideal system behavior by the method is an advantage where nonideal
behavior is considered to be a design fault. However, where the nonideal behavior must be
accepted as part of the system characteristic, the uncertainty in the prediction error increases,
reducing the sensitivity of the method to fault detection. Better modeling of the system behavior
results in a reduction in the uncertainty in the model predictions and improved fault detection
rate. The gray-box electrical power models are less sensitive to nonideal system behavior
because the correlations model the system behavior under closed-loop control. The gray-box
modeling methods were, therefore, more robust than the first-principles-based methods in that
they generated no false alarms. 

Robust fault diagnosis using first-principles-based models and expert rules is limited by the
need for the system to have moved across its range of operation during the occurrence of a fault
condition. A way of generating this information �out of season� would be to inject test signals

Table 12. Comparison of First-Principles Physical Models FDD Method and 
Gray-Box Electrical Power Method

Feature
First-Principles
Physical Models

Gray-Box Electrical
Power Models

Operates only on steady-state 
data

Yes Yes

Calibration time 15 to 23 h 10 h
Active or passive training data Active; a single training period is 

sufficient
Passive; need seasonal data

Training methodology Well defined Less well defined
Thresholds Statistical confidence intervals, 

arbitrarily selected thresholds
Statistical confidence intervals, 

arbitrarily selected thresholds
Critical sensors Supply, return, mixed-air and 

outdoor air temperature sensors, 
return air and outdoor air 
humidity, supply airflow, 
control signals

Electrical power meters, supply 
airflow, control signals for valves 
and fan variable-speed drives

Fault detection Excellent results for faults which 
the methods were tuned to find 

Excellent results for faults which 
the methods were tuned to find

Fault diagnosis Moderate number of 
misdiagnoses

Good results when list of potential 
faults is small

False alarms Moderate None
Extension of method to larger list 

of faults
Possible Some faults cannot be detected 

with electrical power 
measurements

Other issues Excessive number of fault 
parameters in models

Effects of faults on electrical power 
must be carefully defined for each 
component (fan, pump and 
chiller) in each system (constant 
volume, VAV, etc.)
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that excite the system across the deficient region. Fault diagnosis by the recursive re-estimation
of model parameters did not prove to be reliable in the test environment in this research. 

The apparent complexity of both methods reflects their degree of development. Much of the
identification and data gathering processes described could be fully automated. As the methods
mature, the selection of some of the required parameters will become better understood and eas-
ier. There are still issues surrounding the sensitivity and robustness of FDD methods (Dexter
and Pakanen 2001). A balance between sensitivity in detecting faults and robustness in minimiz-
ing false alarms is needed. More testing with data sets from real buildings is required, and in
particular a concerted effort is required to generate reliable, streamlined, and automated com-
missioning processes for FDD methods. Both FDD methods investigated here need to be sim-
pler in terms of application and the analysis of the data and need to be more �transparent� to the
end user.
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I. INTRODUCTION

THE boom in communications research and development has made highly sophisticated means for gathering, mov-
ing, and exchanging information part of everyday life. Examples include the Internet, Bluetooth and 802.11b net-

works, cellular, and satellite communications. However, the process of gathering and analyzing the data to send over
this expanding web of information networks remains expensive for many applications. A building facilities manager
may be able to configure a cellular phone to monitor the energy usage and operating schedule of an HVAC plant, but
the usefulness of the information transmitted will generally be directly proportional to the complexity and size of the
installed sensor array.

This difference between information gathering and information networking serves to re-emphasize an established
fact: though remote access to information and control inputs may be obtained easily and inexpensively via network-
ing, access does not provide useful information without installation of a potentially expensive and intrusive sensor
array. Mass production may ultimately reduce sensor cost, especially for solid-state or technologically advanced
micro-electromechanical sensors. Installation expenses are likely to remain high, especially for temporary monitoring
applications where data is gathered for a brief window of time with a removable sensor network. In addition, the
reliability of a monitoring system with many sensors may be reduced in comparison to a system with relatively fewer
sensors.

The Nonintrusive Load Monitor (NILM) can determine the operating schedule of electrical loads in a target system
from measurements made at a centralized location, such as the electric utility service entry. In contrast to other systems,
the NILM reduces sensor cost by using relatively few sensors. The NILM disaggregates and reports the operation of
individual electrical loads like lights and motors using only measurements of the voltage and aggregate current at the
utility service point of a building. It can also identify the operation of electromechanical devices in other kinds of power
distribution networks. For example, the NILM can determine the load schedule in an aircraft from measurements made
only at the generator, or in an automobile from measurements made at the alternator/battery block. The NILM can
distinguish loads even when many are operating at one time.

The NILM is an ideal platform for extracting useful information about any system that uses electromechanical
devices. The NILM has a low installation cost and high reliability because it uses a bare minimum of sensors. It is
possible to use modern state and parameter estimation algorithms to verify remotely the “health” of electromechanical
loads by using a NILM to associate measured waveforms with the operation of individual loads. The NILM can also
monitor the operation of the electrical distribution system itself, identifying situations where two or more otherwise
healthy loads interfere with each other’s operation through voltage waveform distortion or power quality problems.

Strategies for nonintrusive monitoring have developed over the last twenty years. Advances in computing technol-
ogy make a new wealth of computational tools useful in practical, field-based NILM systems. This paper reviews
techniques for high performance nonintrusive load and diagnostic monitoring and illustrates key points with results
from field tests.

II. BACKGROUND AND EARLY APPROACHES

One of the earliest approaches to nonintrusive monitoring, developed in the 1980’s at MIT by Professor Fred
Schweppe and Dr. George Hart, had its origins in load monitoring for residential buildings. Under Dr. Hart’s in-
genious scheme, the operating schedules of individual loads or groups of loads are determined by identifying times at
which electrical power measurements change from one nearly constant (steady-state) value to another. These steady-
state changes, known as events, nominally correspond to the load either turning on or turning off, and are characterized
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by their magnitude and sign in real and reactive power. Recorded events with equal magnitudes and opposite signs are
paired to establish the operating cycles and energy consumption of individual appliances. This process of detecting
steady-state changes provides the basis for a commercial version of this early work, as described in a 1999 article in
the IEEE Computer Applications in Power.

The 1999 CAP article [2] describes a five-step process for load disaggregation through the detection of changes in
aggregate power consumption. First, an edge detector is used to identify changes in steady-state levels. Second, a clus-
ter analysis algorithm is used to locate these changes in a two-dimensional “signature space” of real and reactive power
(a
���

-
���

plane). The signature space reduces the potentially complicated load transient data to a two-dimensional
space of changes in power consumption with a pleasing and useful graphical interpretation. Third, positive and neg-
ative clusters of similar magnitude are paired or matched (especially for “two-state” loads that turn on, consume a
relatively fixed power, and turn off). In a fourth step known as anomaly resolution, unmatched clusters and events
are paired or associated with existing or new clusters according to a best likelihood algorithm. In the fifth and final
step, pairs of clusters are associated with known load power consumption levels to determine the operating schedule
of individual loads. This step uses information gathered during a training or survey phase in the building.

This five-step approach to nonintrusive load monitoring has the advantage of making intuitive sense, and has been
demonstrably successful in certain classes of buildings, such as residences. Recent field tests in a variety of other
buildings have uncovered a number of limitations of the technique of examining steady-state changes in a signature
space. Some of these limitations are well established, while others are relatively new.

The two-dimensional signature-space technique relies on at least three key assumptions that limit its effectiveness.
The first assumption is that different loads of interest exhibit unique signatures in the

���
-
���

plane. They may not,
especially in commercial and industrial facilities where the number and variety of loads is generally greater than in
a residence. The two-dimensional signature-space becomes crowded with indistinguishable loads as the number and
kind of loads increases. In a home there may be only one 5 kW load, such as a hot water heater. In comparison, a light
commercial facility with an HVAC plant, office equipment, and lighting may have several different loads that overlap
ambiguously in the

���
-
���

plane.
The second limiting assumption is that load composition is determined by steady-state power consumption. This

requires waiting until transient behavior settles out so that steady state values can be measured. We have found
it difficult to find any suitable time scale in industrial or commercial environments that yields reliable steady-state
measurements. A conservative estimate of steady-state power might require a long interval of near-constant demand.
Requiring a long steady-state waiting time prevents the monitor from tracking rapid sequences of loads. Some loads
will be missed, and these may not be caught in the anomaly resolution phase. Short waiting times, on the other hand,
may trigger measurements in the middle of load transients, resulting in spurious events in the cluster analysis phase.
Field studies have shown that large HVAC loads such as fans and chillers might take from 30 seconds to several minutes
to gradually spin-up to their final operating speed. Other loads, such as variable speed drives (VSDs), may never settle
to a steady-state. Furthermore, if the variations in power consumption are large enough, VSDs and similar loads could
prevent the monitor from finding a steady-state consumption level or recording any events. Some industrial loads that
ordinarily settle to steady state conditions may fail to do so if they include poorly tuned controllers or other faults.

A third limitation is that most steady-state NILM systems process data in “batch” format using a day or more of
stored data. This is not strictly implied by the five-step disaggregation procedure outlined above, but is based on the
assumption that near-real-time identification of load operation is not necessary. This limits the monitor to load survey
and power scorekeeping applications, excluding the vast potential for applications in real-time diagnostics.

III. ADVANCED TECHNIQUES FOR MONITORING

Steady-state monitoring techniques are successful in homes and small businesses because of the low event generation
rate and number of loads at these sites. Medium to large size commercial and industrial facilities require a more
sophisticated approach, due in part to high rates of event generation, load balancing, and power factor correction.
Savvy commercial and industrial facilities managers want near-real-time monitoring information in addition to batch
results over an interval of several weeks. Real-time identification is also essential if the NILM is to serve as a “black-
box” diagnostic monitor in transportation systems like aircraft or naval vessels. Field tests have demonstrated the value
of a number of enhancements that enable an advanced NILM to tackle complex monitoring environments.
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Fig. 1. Plot of the steady state power consumption of a computer and a bank of incandescent lights. Real power is plotted against reactive
power.

A. Higher Harmonics

Higher harmonics in the aggregate current signal can be used to distinguish loads with overlapping clusters in the
���

-
���

signature space. Many loads draw distorted, non-sinusoidal current due to their inherent physical character-
istics or the presence of power electronics. Examples include office equipment (i.e., computers and copiers), actively
controlled industrial equipment such as variable speed fans, and electroplating baths. Our advanced field monitoring
system uses a phase-locked short-time Fourier transform of current waveforms collected at sample rates of 8000 Hz or
higher to compute “spectral envelopes” that summarize time-varying harmonic content. For a single phase load, real
and reactive power correspond to the envelopes of in-phase and quadrature current drawn by the load relative to the
voltage. The short-time Fourier transform computes estimates of the real, reactive and higher frequency components
of the current.

Figure 1 shows the that higher harmonics are useful for distinguishing loads that are similar in the P-Q signature
space. Figure 1 shows a collection of turn-on and turn-off events recorded at a site with personal computers and
a bank of incandescent lamps. The loads are practically indistinguishable in the P-Q signature space because they
consume essentially the same real and reactive power. However, typical computer power supplies draw “signature”
third harmonic currents. The loads are easily separable by examining higher harmonics.

Figures 2 and 3 illustrates the relative ease of distinguishing individual loads in a three-dimensional space with axes
denoting changes in real power, reactive power, and third harmonic. Our advanced NILM routinely examines harmonic
content up to and including eighth harmonic, and can be customized to examine higher harmonics as necessary.

B. Transient Detection

Our advanced NILM recognizes individual loads based on distinctive load transient shapes. The transient behavior
of a typical load is intimately related to the physical task that the load performs. For example, the turn-on transients
associated with a personal computer and with an incandescent lamp are distinct because charging capacitors in the
computer power supply is fundamentally different from heating a lamp filament. Overall transient profiles tend to be
preserved even in loads that use active waveshaping or power factor correction. Most loads observed in the field have
repeatable transient profiles, or at least sections of the transient profile that are repeatable. Transient-based recognition
permits near-real-time identification of load operation, especially turn-on events.

Transients are identified by matching events in the incoming aggregate power stream to previously defined transient
signatures, or “exemplars.” Exemplars can be determined, for example, by a one-time direct observation of the device
in question, or by previous training in the laboratory. Pre-training has proven to be a reasonable approach for very
repeatable loads that show up in large quantities, such as fluorescent lamp ballasts. The exemplar may be composed of
multiple parts for transients with a number of distinct sections. Each section of the exemplar can be shifted in time and
offset to match a incoming transient data. In addition, an overall gain may be applied to all sections of the exemplar to
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achieve a better fit. Each event detected is compared to the full set of exemplars by using a least squares criterion to
select the appropriate shifts and gains. The match with the lowest residual norm per number of points is then compared
to a threshold. If the fit is good enough, the event is classified as a match to the exemplar. If not, the event is left
unclassified. Correct classification of overlapping transients is possible using properly designed exemplars.

The value of examining transient information can be understood graphically by examining Figures 4, 5, and 6.
Figures 4 and 5 show the spectral envelopes corresponding to the fundamental, in-phase component of current (essen-
tially, “real power”) demanded in four different buildings in California. The top graph in Figure 4 shows the power
consumed solely by the HVAC panel in a building (“ISD”) in Los Angeles County. The bottom trace of Figure 4 and
the top trace of Figure 5 show power consumption in two different public schools near San Francisco (“Hanna” and
“Pinole”, respectively). Finally, the bottom trace in Figure 5 shows the total power consumption in another building in
Los Angeles County (“Comm”); the inset in this plot is a magnified portion of the same waveform, illustrating the high
density of events. These four traces show a progression in increasing event generation in a building HVAC panel using
steady-state signature detection. As the complexity and variation on the electrical grid increases, it becomes more
difficult to tune a steady-state change detector to function at all. For buildings with behavior nearing that of the Comm
building, it becomes essential to either augment the steady-state approach or discard it completely in favor of transient
identification. By enabling the monitor to deal with higher rates of event generation, a single NILM using transient
event detection can generally monitor a comparatively more complex building power network than with steady-state
change detection alone.

In addition to better load disaggregation, transient analysis can provide diagnostic information. Diagnostics can be
developed by exploring the the relationship between the electrical transient and the physics of the load. Specifically, a
load model can often be developed which relates the shape of the electrical transient to physical or design parameters
of the load. The load model is often a differential equation, although we have experimented with other choices. It is
often possible to deduce the physical condition of the load by examining load model parameters when the transient
data is rich enough to identify the load model.

Figure 6 illustrates the diagnostic capabilities of our advanced NILM. The numbers displayed in the text window
below the graphs in Fig. 6 show estimated parameters of an induction machine model. The solid lines in the graph
represent raw data, while the points show the results of a simulation with the estimated parameters. The close agree-
ment shown in the figure indicates that the parameters and model accurately predict the response of the actual load. In
addition to developing these physically-based models, we have also developed techniques that can accurately estimate
model parameters without a good initial guess. These estimation methods enable a building manager to trend load
parameters and use parameter information to predict impending faults. In the case of an induction motor, such faults
might include shorted motor windings, broken rotor bars, and especially failures in a mechanical system attached to
the shaft, e.g., a slipping belt.
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Fig. 4. Plots of the aggregate energy consumption collected at
the HVAC service entry in a California county government build-
ing and at the main service entrance of a California elementary
school.
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Fig. 5. Plots of the aggregate energy consumption collected
at the main service entries of a California middle school and a
communications service building. The inset plot illustrates the
high density of events; this data in this plot is averaged in order
to enhance the visibility of the individual events.

Fig. 6. Startup transient for an induction machine.

C. Disaggregating Continuously Variable Loads

A third benefit obtained through transient identification and spectral analysis is that our advanced NILM has the
ability to monitor buildings with continuously variable loads. Many such loads, such as the VSDs used in HVAC fans,
servo their electrical power consumption under the influence of an active closed-loop controller. Transient detection
can simplify the tracking of these and other continuously variable loads in several ways.

Figure 7 shows three spectral envelopes associated with the operation of a 40 Hp VSD in an HVAC plant on the
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MIT campus. The top trace in this figure shows the real power demanded by a variable-speed fan drive in an HVAC
system. The drive begins with an “open-loop” spin-up to operating speed during the first � � seconds of operation. This
open-loop spin-up is repeatable because a microprocessor controls the startup profile every time the drive is activated.
A NILM can recognize that a VSD is active in the building using transient recognition, but transient recognition does
not provide a means for continuously tracking the power consumption of a variable load like a VSD.

When the NILM recognizes a continuously variable load like a VSD, we have found that it is often possible to
disaggregate the variable load by carefully examining the spectral envelopes. The VSD connects to the utility through
a three-phase, delta-connected rectifier. The three-phase rectifier draws distorted, pulsatile current waveforms from
each of the three utility phases. As shown in the lower two traces in Figure 7, this rectifier set has the effect of causing
the VSD to create characteristic traces not only in real power but also in the fifth and seventh harmonics, as illustrated
in the middle and bottom traces respectively. These higher harmonic traces have envelopes that roughly track the shape
of the real power trace. If the VSD is the only load at a target site which generates the bulk of a particular harmonic
signal (such as the seventh harmonic) in the aggregate data, this particular harmonic signal can be functionally mapped
and subtracted from the “real power” spectral envelope in order to remove the continuously varying component of the
“real power” signal due to the VSD from the aggregate power signal. This makes it easier to identify the remaining
active loads in the aggregate power signal. In general, the higher harmonic information can be used both to track the
energy consumption of the variable load and also to disaggregate this variable load from the power consumption of the
remaining loads. There are many possible variations on this technique of refining the mappings between a particular
harmonic and other harmonics; these techniques allow one group of loads to be disaggregated from another.
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Fig. 7. Startup transient of a variable speed drive.

Additionally, harmonic signatures can provide direct diagnostic information even without parameter estimation.
Returning to Figure 7, the drive is operating under closed loop control as it attempts to regulate the pressure in a distant
duct by varying fan speed starting at � � � seconds. The control loop is poorly tuned and the drive exhibits a slow, large
amplitude oscillation in “steady state.” This pathology is not easily caught in a brief inspection of the drive, as the
oscillation is fairly slow; nevertheless, the identification of this failure mode is important because it wastes energy and
wears the mechanical components of the drive. This condition is easily caught by an advanced NILM which examines
transients and spectral envelopes.
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IV. APPLICATIONS AND THE FUTURE

We have implemented all of these analytical enhancements for nonintrusive monitoring on an inexpensive computer
platform for use in the field. A suite of NILM tools, including sophisticated model-based diagnostic algorithms that
track (and could in principle trend) model parameters to determine the health of critical loads, has been developed
under the Linux operating system environment. All of these software tools run on a Pentium-class personal computer
(300 MHz clock or higher) with a PCI-bus data-acquisition card; any relatively inexpensive personal computer, laptop,
or embedded system like a PC104 chassis could be used to develop a modern monitor which performs transient event
detection. We have used all of these platforms with success in buildings and transportation systems.

Current experiments in the field are aimed at enhancing the diagnostic capabilities of the NILM, integrating it into
building energy management and control systems, and improving it as a load monitor for conducting surveys and
energy-usage scorekeeping. Even in very modern buildings with sophisticated control and consumption metering
systems, we have found that the monitor is invaluable to sophisticated facilities managers. As the NILM requires
virtually no additional wiring effort and few installed sensors, it provides invaluable building operating history and
health information in a package which is both easy to install and highly reliable.

In the future, we expect to introduce new event detection and classification schemes where load disaggregation and
usage tracking are increasingly accurate. The best approaches appear to blend all the tools described above to some
degree. For example, the highest accuracy in usage disaggregation may be obtained by combining the steady-state and
transient approaches to event recognition. Additionally, the steady-state signature scheme can obviously be enhanced
by working in a larger signature space with harmonic data. Yet another combination of steady-state and transient
identification methods may be used to alleviate the problem of defining steady-state intervals by using transient event
detection to tease apart overlapping transients which occur at high rates. Furthermore, the transient detection approach
may be minimally successful when transient shapes are masked or distorted by background, periodic oscillations in the
building; by examining changes in the steady-state sections of the aggregate data stream, the transient event detector
may be more successful in looking for “most likely” shapes in a cluster of overlapping or distorted transients. We are
currently developing “arbiters” that use many different approaches to identify events with the highest possible accuracy
and precision.

Fig. 8. Nonintrusive monitoring on the web.
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Because the advanced NILM uses a conventional computer platform, it is easily connected with communications
networks, including the web. An example from a NILM installed on the MIT campus is shown in Figure 8. The
Netscape window shows a turn-on transient associated with a washing machine on top of an 11 kW base load; this can
be viewed via a remote connection to a computer monitoring a campus dormitory containing a laundromat. The cusp-
like steady-state, following the initial acceleration of the agitator motor to operating speed, is due to the “steady-state”
oscillation of the agitator. Other load transients recognized by the monitor, including several dryers, are listed in the text
window below the graphs. The items in this list are hypertext links corresponding to recorded events; these links can
be selected in order to view a record for each indicated transient, including time, energy consumption, and diagnostic
parameters (e.g. heater resistance, motor parameters like stator resistance, magnetizing and leakage inductances,
etc.) We anticipate that the advanced NILM technology will provide an ideal platform for remote monitoring and for
customizing network-accessible information packages for utility customers and building occupants.

ACKNOWLEDGMENTS

This research was funded by the California Energy Commission and a grant from the Grainger Foundation.

REFERENCES

[1] “Wired and Wireless,” Technology Review Magazine, Volume 104, No. 5, June 2001, pp. 40–82.
[2] Drenker, S. and A. Kader, “Nonintrusive Monitoring of Electrical Loads,” IEEE Computer Applications in Power, Volume 12, Issue 4, pp.

47-51.
[3] Hart, G.W., “Nonintrusive Appliance Load Monitoring,” Proceedings of the IEEE, Volume 80, No. 12, pp. 1870–1891, December 1992.
[4] Leeb, S.B., S.R. Shaw, J.L. Kirtley, Jr., “Transient Event Detection in Spectral Envelope Estimates for Nonintrusive Load Monitoring,”

IEEE Transactions on Power Delivery, Volume 10, Number 3, pp. 1200-1210, July 1995.
[5] Norford, L.K. and S.B. Leeb, “Non-Intrusive Electrical Load Monitoring in Commercial Buildings Based on Steady State and Transient

Load-Detection Algorithms,” Energy and Buildings, Volume 24, pp. 51-64, 1996.
[6] Shaw, S.R., C.B. Abler, R.F. Lepard, D. Luo, S.B. Leeb, and L.K. Norford, “Instrumentation for High Peformance Nonintrusive Electrical

Load Monitoring,” ASME Journal of Solar Energy Engineering, Vol. 120, No. 3, August 1998, pp. 224–229.
[7] Shaw, S.R. and S.B. Leeb, “Identification of Induction Motor Parameters from Transient Stator Current Measurements,” IEEE Transactions

on Industrial Electronics, Volume 46, No. 1, February 1999, pp.139–149.
[8] Shaw, S.R., R.F. Lepard, S.B. Leeb, and C.R. Laughman, “A Power Quality Prediction System,” IEEE Transactions on Industrial Electron-

ics, Volume 47, No. 3, June 2000, pp. 511–517.

PLACE
PHOTO
HERE

Christopher R. Laughman received the S.B and the M.Eng degrees from the Massachusetts Institute of Technology in
1999 and 2001, respectively. He is currently a research engineer in the Laboratory for Electromagnetic and Electronic
Systems. Current research includes the investigation of modelling and parameter estimation problems in buildings and
transportation systems.


	Non-Intrusive Load Monitors (NILMs) used for Equipment MonitoringAcknowledgement
	Acknowledgements
	Non-Intrusive Load Monitors (NILMs) used for Equipment Monitoring    Preface
	Preface
	Non-Intrusive Load Monitors (NILMs) used for Equipment MonitoringAbstract
	Abstract
	
	
	Monitoring HVAC Equipment Electrical Loads from a



	Non-Intrusive Load Monitors (NILMs) used for Equipment MonitoringAbstract
	Non-Intrusive Load Monitors (NILMs) used for Equipment MonitoringAbstract
	E5P2.2T3a_AC-02-12-4.pdf
	MasterPubsCover_doe.pdf
	Acknowledgement


	E5P22T3d.pdf
	MasterPubsCover_doe.pdf
	Acknowledgement





